首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reinterpretation of the giant moa Dinornis as consisting of two sexually dimorphic allospecies permits thorough site-by-site investigation of the ontogeny and population biology of this genus. Analysis of subadult skeletal material from natural swamp sites in the North and South Islands of New Zealand forms the basis for recognition of growth series for each long bone element, characterized by sequential formation of fossulae in the femur and fusion of bones in the tibiotarsus and tarsometatarsus. Femora reached progressive developmental stages more rapidly than the other long bones, but all three elements reached maturity at about the same time. Patterns of bone fusion in Dinornis are more similar to those in Apteryx than in Struthio, and kiwi are recognized as a suitable developmental analog for interpreting moa ontogeny. Samples from Bell Hill Vineyard Swamp (South Island) and Makirikiri swamp (North Island) are interpreted as representing autochthonous moa populations; comparison with stages of kiwi long bone development suggests that Dinornis at these sites had high adult survivorship in strongly K-selected populations, with 72.5-87.3% of individuals having achieved adult body mass, and 55.9-78.2% being sexually mature. The pattern of low fecundity and probable high longevity in both Dinornis species suggests that populations were vulnerable to loss of adults, primarily through hunting, rather than as a result of habitat destruction.  相似文献   

2.
3.
The exaggerated K-selected life-history strategy of moa has been suggested as an important factor causing their rapid extinction. Classically, this strategy is characterized by few, large offspring and low fecundity rates. Assuming clutches with one or two eggs as derived from the fossil record, we tested if eggs of moa were larger than the average of similar-sized birds, and estimated their unknown annual breeding frequencies. Therefore, we established allometries on body mass and different reproductive traits (i.e. egg mass, clutch mass and annual clutch mass). These were derived for r-selected (r-model) and for K-selected (K-model) bird species. In agreement with our initial expectations, moa had egg to body mass relations seen in “average” extant K-selected birds. While the K-model pointed to a clutch size of one or two eggs for moa corroborating fossil data and a K-selected life-history, the r-model predicted two to three times larger sizes. Under clutch sizes between one and two eggs and an annual clutch mass as observed in other similar-sized flightless island birds (e.g. rails, ratites), the annual clutch mass allometry suggested one to three clutches per year for moa. Even when assuming less than one brood per year (K-model predicts 0.5 clutches per year); annual clutch masses were still consistent with the K-model. Further studies are needed to clarify whether or not the reproductive strategy of flightless island birds and/or of the birds underlying the K-model fits better to the moa strategy. The approach presented herein, illustrates that combining biological and paleontological data can assist in the reconstruction of species traits, which are insufficiently or not preserved in fossils, but are necessary to understand the evolution of traits.  相似文献   

4.
《新西兰生态学杂志》2011,28(2):241-250
This study investigated how predation risk in North Island brown kiwi changes as the birds grow and develop. Over a 10-year period, 53 adult and 126 young kiwi were radio-tagged at Lake Waikaremoana and studied to determine survival rates, causes of death, and rates of growth. Predation loss amongst adults was low (2.49% year-1) and caused mainly by ferrets. Young kiwi suffered intense predation from stoats during their first four months of life, but thereafter became too large (> 800 g) for stoats to kill. Juveniles took at least 880 days to attain adult size, about four times longer than expected for a 2–3 kg bird. Growth rates peaked at about the point of hatch, rather than later on in development as in other birds. We suggest that a long evolutionary history dominated by resource limitation rather than predation may account for slow rates of development in kiwi, and that differences among kiwi species in their ability to persist in the presence of stoats are explained by differences in the time that they take to reach safe-size.  相似文献   

5.
The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather''s aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized.  相似文献   

6.
We present the outcome of a century of post-bottleneck isolation of a long-lived species, the little spotted kiwi (Apteryx owenii, LSK) and demonstrate that profound genetic consequences can result from protecting few individuals in isolation. LSK were saved from extinction by translocation of five birds from South Island, New Zealand to Kapiti Island 100 years ago. The Kapiti population now numbers some 1200 birds and provides founders for new populations. We used 15 microsatellite loci to compare genetic variation among Kapiti LSK and the populations of Red Mercury, Tiritiri Matangi and Long Islands that were founded with birds from Kapiti. Two LSK native to D''Urville Island were also placed on Long Island. We found extremely low genetic variation and signatures of acute and recent genetic bottleneck effects in all four populations, indicating that LSK have survived multiple genetic bottlenecks. The Long Island population appears to have arisen from a single mating pair from Kapiti, suggesting there is no genetic contribution from D''Urville birds among extant LSK. The Ne/NC ratio of Kapiti Island LSK (0.03) is exceptionally low for terrestrial vertebrates and suggests that genetic diversity might still be eroding in this population, despite its large census size.  相似文献   

7.
The moa (Dinornithiformes) are large to gigantic extinct terrestrial birds of New Zealand. Knowledge about niche partitioning, feeding mode and preference among moa species is limited, hampering palaeoecological reconstruction and evaluation of the impacts of their extinction on remnant native biota, or the viability of exotic species as proposed ecological ‘surrogates''. Here we apply three-dimensional finite-element analysis to compare the biomechanical performance of skulls from five of the six moa genera, and two extant ratites, to predict the range of moa feeding behaviours relative to each other and to living relatives. Mechanical performance during biting was compared using simulations of the birds clipping twigs based on muscle reconstruction of mummified moa remains. Other simulated food acquisition strategies included lateral shaking, pullback and dorsoventral movement of the skull. We found evidence for limited overlap in biomechanical performance between the extant emu (Dromaius novaehollandiae) and extinct upland moa (Megalapteryx didinus) based on similarities in mandibular stress distribution in two loading cases, but overall our findings suggest that moa species exploited their habitats in different ways, relative to both each other and extant ratites. The broad range of feeding strategies used by moa, as inferred from interspecific differences in biomechanical performance of the skull, provides insight into mechanisms that facilitated high diversities of these avian herbivores in prehistoric New Zealand.  相似文献   

8.
Here, we describe the bone histology of juvenile specimens of the basal sauropodomorph Mussaurus patagonicus and interpret its significance in terms of the early growth dynamics of this taxon. Thin sections from three juvenile specimens (femur length, 111–120 mm) of Mussaurus were analysed. The sampled bones consist of multiple postcranial elements collected from the Late Triassic Laguna Colorada Formation (El Tranquilo Group, Patagonia). The cortical bone is composed of fibrolamellar bone tissue. Vascularisation is commonly laminar or plexiform in the long bones. Growth marks are absent in all the examined samples. The ‘epiphyses’ of long bones are all formed by well-developed hypertrophied calcified cartilage. The predominance of woven-fibred bone matrix in cortical bones indicates a fast growth rate in the individuals examined. Moreover, given the existence of growth marks in adult specimens of Mussaurus, as in other sauropodomorphs, and assuming that the first lines of arrested growth was formed during the first year of life, the absence of growth marks in all the bones suggest that the specimens died before reaching their first year of life. Compared with the African taxon Massospondylus carinatus (another basal sauropodomorph for which the bone histology has been previously studied), it appears that Mussaurus had a higher early growth rate than Massospondylus.  相似文献   

9.
Ancient DNA has revolutionized the way in which evolutionary biologists research both extinct and extant taxa, from the inference of evolutionary history to the resolution of taxonomy. Here, we present, to our knowledge, the first study to report the rediscovery of an ‘extinct’ avian taxon, the Tasman booby (Sula tasmani), using classical palaeontological data combined with ancient and modern DNA data. Contrary to earlier work, we show an overlap in size between fossil and modern birds in the North Tasman Sea (classified currently as S. tasmani and Sula dactylatra fullagari, respectively). In addition, we show that Holocene fossil birds have mitochondrial control region sequences that are identical to those found in modern birds. These results indicate that the Tasman booby is not an extinct taxon: S. dactylatra fullagari O''Brien & Davies, 1990 is therefore a junior synonym of Sula tasmani van Tets, Meredith, Fullagar & Davidson, 1988 and all North Tasman Sea boobies should be known as S. d. tasmani. In addition to reporting the rediscovery of an extinct avian taxon, our study highlights the need for researchers to be cognizant of multidisciplinary approaches to understanding taxonomy and past biodiversity.  相似文献   

10.
A study was conducted in growth chambers to examine main factor and interaction effects of Tylenchorhynchus nudus and Magnaporthe poae on creeping bentgrass and annual bluegrass at 24, 28, and 30 C. A 2 x 2 factorial arrangement of treatments was employed with presence and absence of T. nudus and M. poae as factors with each temperature run separately for 14 or 18 days. Tylenchorhynchus nudus decreased bentgrass and annual bluegrass root length at all three temperatures. Magnaporthe poae had no effect on bentgrass root length at 24 C, increased root length at 28 C, and suppressed root growth at 30 C. Magnaporthe poae had no effect on annual bluegrass root length at 24 and 28 C but suppressed root growth at 30 C. A significant interaction between M. poae and T. nudus occurred only on bentgrass at 28 C and 30 C; at these two temperatures, M. poae did not act independently of T. nudus.  相似文献   

11.
The extinct moa of New Zealand included three families (Megalapterygidae; Dinornithidae; Emeidae) of flightless palaeognath bird, ranging in mass from <15 kg to >200 kg. They are perceived to have evolved extremely robust leg bones, yet current estimates of body mass have very wide confidence intervals. Without reliable estimators of mass, the extent to which dinornithid and emeid hindlimbs were more robust than modern species remains unclear. Using the convex hull volumetric-based method on CT-scanned skeletons, we estimate the mass of a female Dinornis robustus (Dinornithidae) at 196 kg (range 155–245 kg) and of a female Pachyornis australis (Emeidae) as 50 kg (range 33–68 kg). Finite element analysis of CT-scanned femora and tibiotarsi of two moa and six species of modern palaeognath showed that P. australis experienced the lowest values for stress under all loading conditions, confirming it to be highly robust. In contrast, stress values in the femur of D. robustus were similar to those of modern flightless birds, whereas the tibiotarsus experienced the highest level of stress of any palaeognath. We consider that these two families of Dinornithiformes diverged in their biomechanical responses to selection for robustness and mobility, and exaggerated hindlimb strength was not the only successful evolutionary pathway.  相似文献   

12.
Galα1–4Gal is typically found in mammalian glycolipids in small quantities, and recognized by some pathogens, such as uropathogenic Escherichia coli. In contrast, glycoproteins containing Galα1–4Gal were rarely found in vertebrates except in a few species of birds and amphibians until recently. However, we had previously reported that pigeon (Columba livia) egg white and serum glycoproteins are rich in N-glycans with Galα1–4Gal at non-reducing termini. Our investigation with egg white glycoproteins from 181 avian species also revealed that the distribution of (Galα1–4Gal)-containing glycoproteins was not rare among avians, and is correlated with the phylogeny of birds. The differentiated expression was most likely emerged at earlier stage of diversification of modern birds, but some birds might have lost the facility for the expression relatively recently.  相似文献   

13.

Background and Aims

Under equal conditions, plants that allocate a larger proportion of resources to growth must do so at the expense of investing fewer resources to storage. The critical balance between growth and storage leads to the hypothesis that in high-resource environments, plants that express high growth rates are more susceptible to episodic disturbance than plants that express lower growth rates.

Methods

This hypothesis was tested by measuring the radial growth, basal area increment (BAI) and carbon isotope ratios (δ13C) in tree-ring α-cellulose of 62 mature tamarisk trees (Tamarix spp.) occurring at three sites in the western USA (n = 31 live and 31 killed trees across all sites, respectively). All of the trees had been subjected to periods of complete foliage loss by episodic herbivory over three or more consecutive growing seasons by the tamarisk leaf beetle (Diorhabda carinulata), resulting in approx. 50 % mortality at each site.

Key Results

Mean annual BAI (measured from annual ring widths) in the 10 years prior to the onset of herbivory was on average 45 % higher in killed trees compared with live trees (P < 0·0001). Killed trees that had higher growth rates also expressed higher (less negative) δ13C ratios compared with live trees. In fact, at one site near Moab, UT, the mean annual BAI was 100 % higher in killed trees despite having about a 0·5 ‰ higher δ13C relative to live trees (P = 0·0008). Patterns of δ13C suggest that the intrinsic water-use efficiency was higher in killed than surviving trees, possibly as a consequence of lower whole-canopy stomatal conductance relative to live trees.

Conclusions

The results show that a likely trade-off occurs between radial growth and survival from foliage herbivory in Tamarix spp. that currently dominates riparian areas throughout the western USA and northern Mexico. Thus, herbivory by D. carinulata may reduce the overall net primary productivity of surviving Tamarix trees and may result in a reduction in genetic variability in this dominant invasive tree species if these allocation patterns are adaptive.  相似文献   

14.
The life history of Confuciusornis sanctus is controversial. Recently, the species’ body size spectrum was claimed to contradict osteohistological evidence for a rapid, bird-like development. Moreover, sexual size dimorphism was rejected as an explanation for the observed bimodal size distribution since the presence of elongated rectrices, an assumed ‘male’ trait, was uncorrelated with size. However, this interpretation (i) fails to explain the size spectrum of C. sanctus which is trimodal rather than bimodal, (ii) requires implausible neonate masses and (iii) is not supported by analogy with sexual dimorphisms in modern birds, in which elongated central rectrices are mostly sex-independent. Available information on C. sanctus is readily reconciled if we assume a bird-like life history, as well as a pronounced sexual size dimorphism and sexually isomorphic extravagant feathers as frequently observed in extant species.  相似文献   

15.
16.
《新西兰生态学杂志》2011,34(1):152-157
Pre-human New Zealand had some unusual feeding guilds of birds (e.g. the herbivorous moa fauna), thought to have developed as a result of the absence of a ?normal? mammal fauna. Insectivorous birds, on the other hand, are an integral part of all the world?s ecosystems, regardless of the presence or absence of mammals. While it is acknowledged the overall predation impact from birds in New Zealand is unlikely to have differed greatly from elsewhere, the low impact of mammalian insectivores (apart from microbats), coupled with the presence of a specialised avian feeding guild that concentrated on ground-active prey, might have exerted certain unique selection pressures. Do New Zealand invertebrates reflect this? It would be necessary to compare the New Zealand invertebrate fauna with that of mammal-dominated lands in greater detail than is available today before we could assert whether any unique anti-predator characteristics have evolved. Knowledge of the insects that succumbed to extinction when mammals invaded New Zealand should provide clues to avian-adapted features that might have rendered them particularly vulnerable to introduced rodents. Predation by kiwi (Apteryx spp.), an extraordinarily mammal-like nocturnal bird, may to some extent have prepared the invertebrate fauna for the arrival of small mammals.  相似文献   

17.

Background and Aims

Oil palm flowering and fruit production show seasonal maxima whose causes are unknown. Drought periods confound these rhythms, making it difficult to analyse or predict dynamics of production. The present work aims to analyse phenological and growth responses of adult oil palms to seasonal and inter-annual climatic variability.

Methods

Two oil palm genotypes planted in a replicated design at two sites in Indonesia underwent monthly observations during 22 months in 2006–2008. Measurements included growth of vegetative and reproductive organs, morphology and phenology. Drought was estimated from climatic water balance (rainfall – potential evapotranspiration) and simulated fraction of transpirable soil water. Production history of the same plants for 2001–2005 was used for inter-annual analyses.

Key Results

Drought was absent at the equatorial Kandista site (0°55′N) but the Batu Mulia site (3°12′S) had a dry season with variable severity. Vegetative growth and leaf appearance rate fluctuated with drought level. Yield of fruit, a function of the number of female inflorescences produced, was negatively correlated with photoperiod at Kandista. Dual annual maxima were observed supporting a recent theory of circadian control. The photoperiod-sensitive phases were estimated at 9 (or 9 + 12 × n) months before bunch maturity for a given phytomer. The main sensitive phase for drought effects was estimated at 29 months before bunch maturity, presumably associated with inflorescence sex determination.

Conclusion

It is assumed that seasonal peaks of flowering in oil palm are controlled even near the equator by photoperiod response within a phytomer. These patterns are confounded with drought effects that affect flowering (yield) with long time-lag. Resulting dynamics are complex, but if the present results are confirmed it will be possible to predict them with models.  相似文献   

18.
At higher latitudes, most organisms use the periodic changes in day length to time their annual life cycle. At the equator, changes in day length are minimal, and it is unknown which cues organisms use to synchronize their underlying circannual rhythms to environmental conditions. Here, we demonstrate that the African stonechat (Saxicola torquatus axillaris)-an equatorial songbird-can use subtle solar cues for the annual timing of postnuptial moult, a reliable marker of the circannual cycle. We compared four groups that were kept over more than 3 years: (i) a control group maintained under constant equatorial day length, (ii) a 12-month solar time group maintained under equatorial day length, but including a simulation of the annual periodic change in sunrise and sunset times (solar time), (iii) a 14-month solar time group similar to the previous group but with an extended solar time cycle and (iv) a group maintained under a European temperate photoperiod. Within all 3 years, 12-month solar time birds were significantly more synchronized than controls and 14-month solar time birds. Furthermore, the moult of 12-month solar time birds occurred during the same time of the year as that of free-living Kenyan conspecifics. Thus, our data indicate that stonechats may use the subtle periodic pattern of sunrise and sunset at the equator to synchronize their circannual clock.  相似文献   

19.

Background and Aims

European beech epicormics have received far less attention than epicormics of other species, especially sessile oak. However, previous work on beech has demonstrated that there is a negative effect of radial growth on trunk sprouting, while more recent investigations on sessile oak proved a strong positive influence of the presence of epicormics. The aims of this study were, first, to make a general quantification of the epicormics present along beech stems and, secondly, to test the effects of both radial growth and epicormic frequency on sprouting.

Methods

In order to test the effect of radial growth, ten forked individuals were sampled, with a dominant and a dominated fork of almost equal length for every individual. To test the effects of primary growth and epicormic frequency, on the last 17 annual shoots of each fork arm, the number of axillary buds, shoot length, ring width profiles, epicormic shoots and other epicormics were carefully recorded.

Key Results

The distribution of annual shoot length, radial growth profiles and parallel frequencies of all epicormics are presented. The latter frequencies were parallel to the annual shoot lengths, nearly equivalent for both arms of each tree, and radial growth profiles included very narrow rings in the lowest annual shoots and even missing rings in the dominated arms alone. The location of the latent buds and the epicormics was mainly at branch base, while epicormic shoots, bud clusters and spheroblasts were present mainly in the lowest annual shoots investigated. Using a zero-inflated mixed model, sprouting was shown to depend positively on epicormic frequency and negatively on radial growth.

Conclusions

Support for a trade-off between cambial activity and sprouting is put forward. Sprouting mainly depends on the frequency of epicormics. Between- and within-tree variability of the epicormic composition in a given species may thus have fundamental and applied implications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号