首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glioblastoma (GB) is the highest grade of primary adult brain tumors, characterized by a poorly defined and highly invasive cell population. Importantly, these invading cells are attributed with having a decreased sensitivity to radiation and chemotherapy. TNF-like weak inducer of apoptosis (TWEAK)-Fn14 ligand-receptor signaling is one mechanism in GB that promotes cell invasiveness and survival and is dependent upon the activity of multiple Rho GTPases, including Rac1. Here we report that Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF), a RhoG-specific guanine nucleotide exchange factor, is overexpressed in GB tumors and promotes TWEAK-Fn14-mediated glioma invasion. Importantly, levels of SGEF expression in GB tumors inversely correlate with patient survival. SGEF mRNA expression is increased in GB cells at the invasive rim relative to those in the tumor core, and knockdown of SGEF expression by shRNA decreases glioma cell migration in vitro and invasion ex vivo. Furthermore, we showed that, upon TWEAK stimulation, SGEF is recruited to the Fn14 cytoplasmic tail via TRAF2. Mutation of the Fn14-TRAF domain site or depletion of TNF receptor-associated factor 2 (TRAF2) expression by siRNA oligonucleotides blocked SGEF recruitment to Fn14 and inhibited SGEF activity and subsequent GB cell migration. We also showed that knockdown of either SGEF or RhoG diminished TWEAK activation of Rac1 and subsequent lamellipodia formation. Together, these results indicate that SGEF-RhoG is an important downstream regulator of TWEAK-Fn14-driven GB cell migration and invasion.  相似文献   

2.
A critical problem in the treatment of malignant gliomas is the extensive infiltration of individual tumor cells into adjacent brain tissues. This invasive phenotype severely limits all current therapies, and to date, no treatment is available to control the spread of this disease. Members of the tumor necrosis factor (TNF) ligand superfamily and their cognate receptors regulate various cellular responses including proliferation, migration, differentiation, and apoptosis. Specifically, the TNFRSF19/TROY gene encodes a type I cell surface receptor that is expressed on migrating or proliferating progenitor cells of the hippocampus, thalamus, and cerebral cortex. Here, we show that levels of TROY mRNA expression directly correlate with increasing glial tumor grade. Among malignant gliomas, TROY expression correlates inversely with overall patient survival. In addition, we show that TROY overexpression in glioma cells activates Rac1 signaling in a Pyk2-dependent manner to drive glioma cell invasion and migration. Pyk2 coimmunoprecipitates with the TROY receptor, and depletion of Pyk2 expression by short hairpin RNA interference oligonucleotides inhibits TROY-induced Rac1 activation and subsequent cellular migration. These findings position aberrant expression and/or signaling by TROY as a contributor, and possibly as a driver, of the malignant dispersion of glioma cells.  相似文献   

3.
Malignant glioblastomas are characterized by their ability to infiltrate into normal brain. We previously reported that binding of the multifunctional cytokine TNF-like weak inducer of apoptosis (TWEAK) to its receptor fibroblast growth factor-inducible 14 (Fn14) induces glioblastoma cell invasion via Rac1 activation. Here, we show that Cdc42 plays an essential role in Fn14-mediated activation of Rac1. TWEAK-treated glioma cells display an increased activation of Cdc42, and depletion of Cdc42 using siRNA abolishes TWEAK-induced Rac1 activation and abrogates glioma cell migration and invasion. In contrast, Rac1 depletion does not affect Cdc42 activation by Fn14, showing that Cdc42 mediates TWEAK-stimulated Rac1 activation. Furthermore, we identified two guanine nucleotide exchange factors (GEF), Ect2 and Trio, involved in TWEAK-induced activation of Cdc42 and Rac1, respectively. Depletion of Ect2 abrogates both TWEAK-induced Cdc42 and Rac1 activation, as well as subsequent TWEAK-Fn14-directed glioma cell migration and invasion. In contrast, Trio depletion inhibits TWEAK-induced Rac1 activation but not TWEAK-induced Cdc42 activation. Finally, inappropriate expression of Fn14 or Ect2 in mouse astrocytes in vivo using an RCAS vector system for glial-specific gene transfer in G-tva transgenic mice induces astrocyte migration within the brain, corroborating the in vitro importance of the TWEAK-Fn14 signaling cascade in glioblastoma invasion. Our results suggest that the TWEAK-Fn14 signaling axis stimulates glioma cell migration and invasion through two GEF-GTPase signaling units, Ect2-Cdc42 and Trio-Rac1. Components of the Fn14-Rho GEF-Rho GTPase signaling pathway present innovative drug targets for glioma therapy.  相似文献   

4.
Semaphorins and plexins are implicated in the progression of various types of cancer, although the molecular basis has not been fully elucidated. Here, we report the expression of plexin-B3 in glioma cells, which upon stimulation by its ligand Sema5A results in significant inhibition of cell migration and invasion. A search for the underlying mechanism revealed direct interaction of plexin-B3 with RhoGDP dissociation inhibitor α (RhoGDIα), a negative regulator of RhoGTPases that blocks guanine nucleotide exchange and sequesters them away from the plasma membrane. Glioma cells challenged with Sema5A indeed showed a marked reduction in Rac1-GTP levels by 60%, with a concomitant disruption of lamellipodia. The inactivation of Rac1 was corroborated to contribute to the impediment of glioma cell invasion by Sema5A, as supported by the abolishment of effect upon forced expression of a constitutively active Rac1 mutant. Furthermore, silencing the endogenous expression of RhoGDIα in glioma cells was found to be sufficient in abrogating the down-regulation of Rac1-GTP and the ensuing suppression of glioma cell motility induced by Sema5A. Mechanistically, we provide evidence that Sema5A promotes Rac1 recruitment to RhoGDIα and reduces its membrane localization in a plexin-B3-dependent manner, thereby preventing Rac1 activation. This represents a novel signaling of semaphorin and plexin in the control of cell motility by indirect inactivation of Rac1 through RhoGDIα.  相似文献   

5.
Glioblastoma is the most common and lethal primary intracranial tumor. As the key regulator of tumor cell volume, sodium-potassium-chloride cotransporter 1 (NKCC1) expression increases along with the malignancy of the glioma, and NKCC1 has been implicated in glioblastoma invasion. However, little is known about the role of NKCC1 in the epithelial-mesenchymal transition-like process in gliomas. We noticed that aberrantly elevated expression of NKCC1 leads to changes in the shape, polarity, and adhesion of cells in glioma. Here, we investigated whether NKCC1 promotes an epithelial–mesenchymal transition (EMT)-like process in gliomas via the RhoA and Rac1 signaling pathways. Pharmacological inhibition and knockdown of NKCC1 both decrease the expressions of mesenchymal markers, such as N-cadherin, vimentin, and snail, whereas these treatments increase the expression of the epithelial marker E-cadherin. These findings indicate that NKCC1 promotes an EMT-like process in gliomas. The underlying mechanism is the facilitation of the binding of Rac1 and RhoA to GTP by NKCC1, which results in a significant enhancement of the EMT-like process. Specific inhibition or knockdown of NKCC1 both attenuate activated Rac1 and RhoA, and the pharmacological inhibitions of Rac1 and RhoA both impair the invasion and migration abilities of gliomas. Furthermore, we illustrated that NKCC1 knockdown abolished the dissemination and spread of glioma cells in a nude mouse intracranial model. These findings suggest that elevated NKCC1 activity acts in the regulation of an EMT-like process in gliomas, and thus provides a novel therapeutic strategy for targeting the invasiveness of gliomas, which might help to inhibit the spread of malignant intracranial tumors.  相似文献   

6.
The urokinase-type plasminogen activator receptor (uPAR) drives tumor cell membrane protrusion and motility through activation of Rac; however, the pathway leading from uPAR to Rac activation has not been described. In this study we identify DOCK180 as the guanine nucleotide exchange factor acting downstream of uPAR. We show that uPAR cooperates with integrin complexes containing β3 integrin to drive formation of the p130Cas–CrkII signaling complex and activation of Rac, resulting in a Rac-driven elongated-mesenchymal morphology, cell motility, and invasion. Our findings identify a signaling pathway underlying the morphological changes and increased cell motility associated with uPAR expression.  相似文献   

7.
Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) plays a great role in tumor cell growth, but its function and mechanism in cell invasive behavior are totally unknown. Here we report that NEDD4-1 regulates migration and invasion of malignant glioma cells via triggering ubiquitination of cyclic nucleotide Ras guanine nucleotide exchange factor (CNrasGEF) using cultured glioma cells. NEDD4-1 overexpression promoted cell migration and invasion, while its downregulation specifically inhibited them. However, NEDD4-1 did not affect the proliferation and apoptosis of glioma cells. NEDD4-1 physically interacted with CNrasGEF and promoted its poly-ubiquitination and degradation. Contrary to the effect of NEDD4-1, CNrasGEF downregulation promoted cell migration and invasion, while its overexpression inhibited them. Importantly, downregulation of CNrasGEF facilitated the effect of NEDD4-1-induced cell migration and invasion. Interestingly, aberrant up-regulated NEDD4-1 showed reverse correlation with CNrasGEF protein level but not with its mRNA level in glioma tissues. Combined with the in vitro results, the result of glioma tissues indicated post-translationally modification effect of NEDD4-1 on CNrasGEF. Our study suggests that NEDD4-1 regulates cell migration and invasion through ubiquitination of CNrasGEF in vitro.  相似文献   

8.
SWAP-70 has been demonstrated as a multiple functional signaling protein involved in formation of membrane ruffling induced by signal cascade of tyrosine kinase growth factor receptors. In the present study, the spatial and temporal expression pattern of SWAP-70 on human fetomaternal interface was investigated using specimens collected from tubal and normal pregnancies by in situ hybridization, immunohistochemistry, and Western blotting. Data showed an intense expression of SWAP-70 in trophoblasts at weeks 3-6 of fallopian implantation and at weeks 6-7 of normal pregnancy. The most intense expression was exhibited by those highly motile and invasive extravillous trophoblasts. From gestational week 8 on, the level of SWAP-70 in trophoblasts decreased significantly, and the signal was restricted in villous cytotrophoblast cells. In the in vitro cultured human trophoblast cell line, B6Tert-1, colocalization of SWAP-70 with F-actin was verified. Data in human placenta were similar to what we recently reported on rhesus monkey fetomaternal interface. Our results suggest that SWAP-70 may be involved in regulating migration and invasion of trophoblast cells during the processes of embryonic implantation and placentation in primates.  相似文献   

9.
Yoon CH  Hyun KH  Kim RK  Lee H  Lim EJ  Chung HY  An S  Park MJ  Suh Y  Kim MJ  Lee SJ 《FEBS letters》2011,585(14):2331-2338
A subpopulation of cancer cells with stem cell properties is responsible for tumor formation, maintenance, and malignant progression; however, the molecular mechanisms underlying the maintenance of cancer stem-like cell properties have remained unclear. Here, we show that the Rho family GTPase Rac1 is involved in the glioma stem-like cell (GSLC) maintenance and tumorigenicity in human glioma. The Rac1-Pak signaling was markedly activated in GSLCs. Knockdown of Rac1 caused reduction of expression of GSLC markers, self-renewal-related proteins and neurosphere formation. Moreover, down-regulation of Rac1 suppressed the migration, invasion, and malignant transformation in GSLCs. Furthermore, inhibition of Rac1 enhanced radiation sensitivity of GSLCs. These results indicate that the small GTPase Rac1 is involved in the maintenance of stemness and malignancies in GSLCs.  相似文献   

10.
During the infiltration process, glioma cells are known to migrate along preexisting anatomical structures such as blood vessels, axonal fiber tracts and the subependymal space, thereby widely invading surrounding CNS tissue. This phenomenon represents a major obstacle for the clinical treatment of these tumours. Several extracellular key factors and intracellular signaling pathways have been previously linked to the highly aggressive, invasive phenotype observed in malignant gliomas. The glioblastoma (GBM) which is the most malignant form of these tumors, is histologically characterized by areas of tumor necroses and pseudopalisading cells, the latter likely representing tumor cells actively migrating away from the hypoxic-ischemic core of the tumor. It is believed that intravascular thromboses play a major role in the emergence of hypoxia and intratumoral necroses in GBMs. One of the most highly upregulated prothrombotic factor in malignant gliomas is tissue factor (TF), a 47 kDa type I transmembrane protein belonging to the cytokine receptor superfamily. In a recent study, we provided evidence that TF/FVIIa signaling via the protease-activated receptor 2 (PAR-2) promotes cell growth, migration and invasion of glioma cells. In this point of view article we outline the key molecular players involved in migration and invasion of gliomas, highlight the potential role of TF for the pro-migratory and pro-invasive phenotype of these tumors and discuss the underlying mechanisms on the cellular level and in the tumor microenvironment.  相似文献   

11.
Antisense Tiam1 down-regulates the invasiveness of 95D cells in vitro   总被引:3,自引:0,他引:3  
As a specific guanine nucleotide exchange factor of Rac 1, Tiam 1 (T-lymphoma invasion and metastasis inducing protein 1) is involved in a number of cellular events, such as cytoskeleton reorganization, cell adhesion, and cell migration. Since Tiaml was implicated in the invasion and metastasis of T-lymphoma cells and breast tumor cells, we compared the expression level of Tiaml in two human giant-cell lung carcinoma cell strains with high or low metastasis potential, and found that Tiaml expression level in high-metastatic 95D cells was higher than that in low-metastatic 95C cells. To further confirm the role of Tiam I in invasion and metastasis, we constructed the antisense Tiaml expression plasmid (pcDNA3-anti-Tiaml), which was transfected into 95D cells. A stable transfected clone with decreased Tiaml expression was screened and selected for further research. Transwell assay showed that down-regulation of endogenous Tiam1 by anti-Tiam1 can reduce the in vitro invasiveness of 95D cells. Our results suggested that Tiam1 signaling contributed to the invasion and metastasis of the human giant-cell lung carcinoma cells.  相似文献   

12.
Antisense Tiam1 Down-Regulates the Invasiveness of 95D Cells in Vitro   总被引:6,自引:0,他引:6  
Invasion and metastasis are the main death causes oftumor patients, and aberrant expression of some genescontributes to tumor cell invasion and metastasis [1]. Tiam1was firstly identified as a gene amplified by insertedretrovirus which can confer metastat…  相似文献   

13.
The tumor suppressor adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumors. APC stimulates the activity of the Cdc42- and Rac1-specific guanine nucleotide exchange factor Asef and promotes the migration and invasion of colorectal tumor cells. Furthermore, Asef is overexpressed in colorectal tumors and is required for colorectal tumorigenesis. It is also known that NOTCH signaling plays critical roles in colorectal tumorigenesis and fate determination of intestinal progenitor cells. Here we show that NOTCH3 up-regulates Asef expression by activating the Asef promoter in colorectal tumor cells. Moreover, we demonstrate that microRNA-1 (miR-1) is down-regulated in colorectal tumors and that miR-1 has the potential to suppress NOTCH3 expression through direct binding to its 3’-UTR region. These results suggest that the miR-1-NOTCH3-Asef pathway is important for colorectal tumor cell migration and may be a promising molecular target for the treatment of colorectal tumors.  相似文献   

14.
BACKGROUND: Tumor cells can move in a three-dimensional (3D) environment in either mesenchymal-type or amoeboid modes. In mesenchymal-type movement, cells have an elongated morphology with Rac-induced protrusions at the leading edge. Amoeboid cells have high levels of actomyosin contractility, and movement is associated with deformation of the cell body through the matrix without proteolysis. Because signaling pathways that control the activation of GTPases for amoeboid movement are poorly understood, we sought to identify regulators of amoeboid movement by screening an siRNA library targeting guanine nucleotide exchange factors (GEFs) for Rho-family GTPases. RESULTS: We identified DOCK10, a Cdc42 GEF, as a key player in amoeboid migration; accordingly, we find that expression of activated Cdc42 induces a mesenchymal-amoeboid transition and increases cell invasion. Silencing DOCK10 expression promotes conversion to mesenchymal migration and is associated with decreased MLC2 phosphorylation and increased Rac1 activation. Consequently, abrogating DOCK10 and Rac1 expression suppresses both amoeboid and mesenchymal migration and results in decreased invasion. We show that the Cdc42 effectors N-WASP and Pak2 are required for the maintenance of the rounded-amoeboid phenotype. Blocking Cdc42 results in loss of mesenchymal morphology, arguing that Cdc42 is also involved in mesenchymal morphology through different activation and effector pathways. CONCLUSIONS: Previous work has identified roles of Rho and Rac signaling in tumor cell movement, and we now elucidate novel roles of Cdc42 signaling in amoeboid and mesenchymal movement and tumor cell invasion.  相似文献   

15.
During the infiltration process, glioma cells are known to migrate along preexisting anatomical structures such as blood vessels, axonal fiber tracts and the subependymal space, thereby widely invading surrounding CNS tissue. This phenomenon represents a major obstacle for the clinical treatment of these tumors. Several extracellular key factors and intracellular signaling pathways have been previously linked to the highly aggressive, invasive phenotype observed in malignant gliomas. The glioblastoma (GBM), which is the most malignant form of these tumors, is histologically characterized by areas of tumor necroses and pseudopalisading cells, the latter likely representing tumor cells actively migrating away from the hypoxic- ischemic core of the tumor. It is believed that intravascular thromboses play a major role in the emergence of hypoxia and intratumoral necroses in GBMs. One of the most highly upregulated prothrombotic factor in malignant gliomas is tissue factor (TF), a 47 kDa type I transmembrane protein belonging to the cytokine receptor superfamily. In a recent study, we provided evidence that TF/FVIIa signaling via the protease-activated receptor 2 (PAR-2) promotes cell growth, migration and invasion of glioma cells. In this Commentary & View, we outline the key molecular players involved in migration and invasion of gliomas, highlight the potential role of TF for the pro-migratory and pro-invasive phenotype of these tumors and discuss the underlying mechanisms on the cellular level and in the tumor microenvironment.Key words: brain tumor, blood coagulation, hypoxia, MAP kinase, cancer stem cells, tumor invasion  相似文献   

16.
The actin cytoskeleton of hepatic stellate cells (HSCs) is reorganized when they are cultured in 3D collagen matrices. Here, we investigated the molecular mechanism of actin cytoskeleton reorganization in HSCs cultured in 3D floating collagen matrices (FCM) compared to those on 2D polystyrene surfaces (PS). First, we found that the generation of dendritic cellular processes was controlled by Rac1. Next, we examined the differential gene expression of HSCs cultured on 2D PS and in 3D FCM by RNA-Seq and focused on the changes of actin cytoskeleton reorganization-related molecular components and guanine nucleotide exchange factors (GEFs). The results showed that the expression of genes associated with actin cytoskeleton reorganization-related cellular components, filopodia and lamellipodia, were significantly decreased, but podosome-related genes was significantly increased in 3D FCM. Furthermore, we found that a Rac1-specific GEF, ARHGEF4, played roles in morphological changes, migration and podosome-related gene expression in HSCs cultured in 3D FCM.

Abbreviations: 2D PS: 2-dimensional polystyrene surface; 3D FCM: 3-dimensional floating collagen matrices; ARHGEF4: Rho guanine nucleotide exchange factor 4; ARHGEF6: Rho guanine nucleotide exchange factor 6; GEF: guanine nucleotide exchange factor; HSC: hepatic stellate cell  相似文献   


17.
Migration and invasion are often recognized as the main reasons for the high recurrence and death rates of glioma and limit the efficacy of surgery and other antitumor therapies. In this study, we found over activation of heat shock cognate protein 70 (Hsc70) in human glioma specimens, which was closely related to glioma grade. We investigated whether Hsc70 induced the migration and invasion of glioma cells. Wound healing and transwell migration assay were used to determine the migration and invasion ability of human glioma U251 and U87 cells, in which the expression of Hsc70 was knocked down by small interfering RNA. Western blot analysis was performed to determine the expression of FAK-Src signaling in malignant glioma cells. The results showed that Hsc70 deficiency significantly retarded migration and invasion and reduced the phosphorylation of FAK, Src, and Pyk2 in U251 and U87 cells. Overall, our results indicate that the migration and invasion capacity of human brain glioma cells is at least partly induced by Hsc70-dependent activation of FAK-Src signaling.  相似文献   

18.
We have identified a human cDNA encoding a novel protein, exchange factor for ARF6 (EFA6), which contains Sec7 and pleckstrin homology domains. EFA6 promotes efficient guanine nucleotide exchange on ARF6 and is distinct from the ARNO family of ARF1 exchange factors. The protein localizes to a dense matrix on the cytoplasmic face of plasma membrane invaginations, induced on its expression. We show that EFA6 regulates endosomal membrane recycling and promotes the redistribution of transferrin receptors to the cell surface. Furthermore, expression of EFA6 induces actin-based membrane ruffles that are inhibited by co-expression of dominant-inhibitory mutant forms of ARF6 or Rac1. Our results demonstrate that by catalyzing nucleotide exchange on ARF6 at the plasma membrane and by regulating Rac1 activation, EFA6 coordinates endocytosis with cytoskeletal rearrangements.  相似文献   

19.
Malignant progression in gliomas is correlated with increased migratory capacity which involves metalloproteolytic activity. Here, we report that ectopic expression of BCL-2 in two malignant glioma sublines markedly promoted glioma cell migration from spheroids and invasion into Matrigel-coated membranes. Invasion of fetal rat-brain aggregates was enhanced by BCL-2. Zymography revealed activation of matrix metalloproteinase-2 (MMP-2) in BCL-2-expressing cells. BCL-2 expressing cells showed an increase in MMP-2/-3/-12 (LN-18), and MMP-9/-12 and cell surface urokinase-type plasminogen activator (u-PA) (LN-229) mRNA and a reduction in tissue inhibitors of metalloproteinases (TIMP)-2 mRNA (LN-229). Taken together, we propose a novel function for BCL-2 in the malignant phenotype of glioma cells, that is, to enhance migration and invasion by altering the expression of a set of metalloproteinases and their inhibitors.  相似文献   

20.
Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the Rho family of small GTPases. As a member of this family, Rac1 promotes VEGF-induced endothelial cell migration by stimulating the formation of lamellipodia and membrane ruffles. To form these membrane protrusions, Rac1 is activated by guanine nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP. The goal of this study was to identify the GEF responsible for activating Rac1 in response to VEGF stimulation. We have found that VEGF stimulates biphasic activation of Rac1 and for these studies we focused on the peak of activation that occurs at 30 min. Inhibition of VEGFR-2 signaling blocks VEGF-induced Rac1 activation. Using a Rac1 nucleotide-free mutant (G15ARac1), which has a high affinity for binding activated GEFs, we show that the Rac GEF Vav2 associates with G15ARac1 after VEGF stimulation. Additionally, we show that depleting endothelial cells of endogenous Vav2 with siRNA prevents VEGF-induced Rac1 activation. Moreover, Vav2 is tyrosine phosphorylated upon VEGF treatment, which temporally correlates with Rac1 activation and requires VEGFR-2 signaling and Src kinase activity. Finally, we show that depressing Vav2 expression by siRNA impairs VEGF-induced endothelial cell migration. Taken together, our results provide evidence that Vav2 acts downstream of VEGF to activate Rac1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号