首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
5-Aza-2′-deoxycytidine (5-azadC) is a DNA methyltransferase (DNMT) inhibitor increasingly used in treatments of hematological diseases and works by being incorporated into DNA and trapping DNMT. It is unclear what DNA lesions are caused by 5-azadC and if such are substrates for DNA repair. Here, we identify that 5-azadC induces DNA damage as measured by γ-H2AX and 53BP1 foci. Furthermore, 5-azadC induces radial chromosomes and chromatid breaks that depend on active replication, which altogether suggest that trapped DNMT collapses oncoming replication forks into double-strand breaks. We demonstrate that RAD51-mediated homologous recombination (HR) is activated to repair 5-azadC collapsed replication forks. Fanconi anemia (FA) is a rare autosomal recessive disorder, and deaths are often associated with leukemia. Here, we show that FANCG-deficient cells fail to trigger HR-mediated repair of 5-azadC-induced lesions, leading to accumulation of chromatid breaks and inter-chromosomal radial fusions as well as hypersensitivity to the cytotoxic effects of 5-azadC. These data demonstrate that the FA pathway is important to protect from 5-azadC-induced toxicity. Altogether, our data demonstrate that cytotoxicity of the epigenetic drug 5-azadC can, at least in part, be explained by collapsed replication forks requiring FA-mediated HR for repair.  相似文献   

2.
Homologous recombination is an important mechanism in DNA replication to ensure faithful DNA synthesis and genomic stability. In this study, we investigated the role of XRCC2, a member of the RAD51 paralog family, in cellular recovery from replication arrest via homologous recombination. The protein expression of XRCC2, as well as its binding partner RAD51D, is dramatically increased in S- and G2-phases, suggesting that these proteins function during and after DNA synthesis. XRCC2 mutant irs1 cells exhibit hypersensitivity to hydroxyurea (HU) and are defective in the induction of RAD51 foci after HU treatment. In addition, the HU-induced chromatin association of RAD51 is deficient in irs1 mutant. Interestingly, irs1 cells are only slightly sensitive to thymidine and able to form intact RAD51 foci in S-phase cells arrested with thymidine. Irs1 cells showed increased level of chromatin-bound RAD51 as well as the wild type cells after thymidine treatment. Both HU and thymidine induce gamma-H2AX foci in arrested S-phase nuclei. These results suggest that XRCC2 is involved in repair of HU-induced damage, but not thymidine-induced damage, at the stalled replication forks. Our data suggest that there are at least two sub-pathways in homologous recombination, XRCC2-dependent and -independent, for repair of stalled replication forks and assembly of RAD51 foci following replication arrest in S-phase.  相似文献   

3.
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5–24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.  相似文献   

4.
Fanconi anemia (FA) patients exhibit bone marrow failure, developmental defects and cancer. The FA pathway maintains chromosomal stability in concert with replication fork maintenance and DNA double strand break (DSB) repair pathways including RAD51-mediated homologous recombination (HR). RAD51 is a recombinase that maintains replication forks and repairs DSBs, but also rearranges chromosomes. Two RecQ helicases, RECQL5 and Bloom syndrome mutated (BLM) suppress HR through nonredundant mechanisms. Here we test the impact deletion of RECQL5 and BLM has on mouse embryonic stem (ES) cells deleted for FANCB, a member of the FA core complex. We show that RECQL5, but not BLM, conferred resistance to mitomycin C (MMC, an interstrand crosslinker) and camptothecin (CPT, a type 1 topoisomerase inhibitor) in FANCB-defective cells. RECQL5 suppressed, while BLM caused, breaks and radials in FANCB-deleted cells exposed to CPT or MMC, respectively. RECQL5 protected the nascent replication strand from MRE11-mediated degradation and restarted stressed replication forks in a manner additive to FANCB. By contrast BLM restarted, but did not protect, replication forks in a manner epistatic to FANCB. RECQL5 also lowered RAD51 levels in FANCB-deleted cells at stressed replication sites implicating a rearrangement avoidance mechanism. Thus, RECQL5 and BLM impact FANCB-defective cells differently in response to replication stress with relevance to chemotherapeutic regimes.  相似文献   

5.
Diverse functions, including DNA replication, recombination and repair, occur during S phase of the eukaryotic cell cycle. It has been proposed that p53 and BLM help regulate these functions. We show that p53 and BLM accumulated after hydroxyurea (HU) treatment, and physically associated and co-localized with each other and with RAD51 at sites of stalled DNA replication forks. HU-induced relocalization of BLM to RAD51 foci was p53 independent. However, BLM was required for efficient localization of either wild-type or mutated (Ser15Ala) p53 to these foci and for physical association of p53 with RAD51. Loss of BLM and p53 function synergistically enhanced homologous recombination frequency, indicating that they mediated the process by complementary pathways. Loss of p53 further enhanced the rate of spontaneous sister chromatid exchange (SCE) in Bloom syndrome (BS) cells, but not in their BLM-corrected counterpart, indicating that involvement of p53 in regulating spontaneous SCE is BLM dependent. These results indicate that p53 and BLM functionally interact during resolution of stalled DNA replication forks and provide insight into the mechanism of genomic fidelity maintenance by these nuclear proteins.  相似文献   

6.
Homologous recombination (HR) is critical for error-free repair of DNA double-strand breaks. Chromatin loading of RAD51, a key protein that mediates the recombination, is a crucial step in the execution of the HR repair. Here, we present evidence that SUMOylation of RAD51 is crucial for the RAD51 recruitment to chromatin and HR repair. We found that topoisomerase 1-binding arginine/serine-rich protein (TOPORS) induces the SUMOylation of RAD51 at lysine residues 57 and 70 in response to DNA damaging agents. The SUMOylation was facilitated by an ATM-induced phosphorylation of TOPORS at threonine 515 upon DNA damage. Knockdown of TOPORS or expression of SUMOylation-deficient RAD51 mutants caused reduction in supporting normal RAD51 functions during the HR repair, suggesting the physiological importance of the modification. We found that the SUMOylation-deficient RAD51 reduces the association with its crucial binding partner BRCA2, explaining its deficiency in supporting the HR repair. These findings altogether demonstrate a crucial role for TOPORS-mediated RAD51 SUMOylation in promoting HR repair and genomic maintenance.  相似文献   

7.
Limiting the levels of homologous recombination (HR) that occur at sites of DNA damage is a major role of BLM helicase. However, very little is known about the mechanisms dictating its relocalization to these sites. Here, we demonstrate that the ubiquitin/SUMO‐dependent DNA damage response (UbS‐DDR), controlled by the E3 ligases RNF8/RNF168, triggers BLM recruitment to sites of replication fork stalling via ubiquitylation in the N‐terminal region of BLM and subsequent BLM binding to the ubiquitin‐interacting motifs of RAP80. Furthermore, we show that this mechanism of BLM relocalization is essential for BLM's ability to suppress excessive/uncontrolled HR at stalled replication forks. Unexpectedly, we also uncovered a requirement for RNF8‐dependent ubiquitylation of BLM and PML for maintaining the integrity of PML‐associated nuclear bodies and as a consequence the localization of BLM to these structures. Lastly, we identified a novel role for RAP80 in preventing proteasomal degradation of BLM in unstressed cells. Taken together, these data highlight an important biochemical link between the UbS‐DDR and BLM‐dependent pathways involved in maintaining genome stability.  相似文献   

8.
Homologous recombination (HR) is a key pathway that repairs DNA double‐strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L–TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L–TONSL associates with replication protein A (RPA)‐coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR‐mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L–TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51‐ssDNA nucleoprotein filament formation and RAD51‐dependent strand exchange activity in vitro. Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L–TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR‐mediated restart in vivo.  相似文献   

9.
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5’ end resection near the fork junction, which permits 3’ single strand invasion of a homologous template for fork restart. This 5’ end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5’ DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5’ overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ.  相似文献   

10.
There are six human RAD51 related proteins (HsRAD51 paralogs), HsRAD51B, HsRAD51C, HsRAD51D, HsXRCC2, HsXRCC3 and HsDMC1, that appear to enhance HsRAD51 mediated homologous recombinational (HR) repair of DNA double strand breaks (DSBs). Here we model the structures of HsRAD51, HsRAD51B and HsRAD51C and show similar domain orientations within a hypothetical nucleoprotein filament (NPF). We then demonstrate that HsRAD51B–HsRAD51C heterodimer forms stable complex on ssDNA and partially stabilizes the HsRAD51 NPF against the anti-recombinogenic activity of BLM. Moreover, HsRAD51B–HsRAD51C stimulates HsRAD51 mediated D-loop formation in the presence of RPA. However, HsRAD51B–HsRAD51C does not facilitate HsRAD51 nucleation on a RPA coated ssDNA. These results suggest that the HsRAD51B–HsRAD51C complex plays a role in stabilizing the HsRAD51 NPF during the presynaptic phase of HR, which appears downstream of BRCA2-mediated HsRAD51 NPF formation.  相似文献   

11.
Homologous recombination (HR)-based repair during DNA replication can apparently utilize several partially overlapping repair pathways in response to any given lesion. A key player in HR repair is the Sgs1-Top3-Rmi1 (STR) complex, which is critical for resolving X-shaped recombination intermediates formed following bypass of methyl methanesulfonate (MMS)-induced damage. STR mutants are also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU), but unlike MMS treatment, HU treatment is not accompanied by X-structure accumulation, and it is thus unclear how STR functions in this context. Here we provide evidence that HU-induced fork stalling enlists Top3 prior to recombination intermediate formation. The resistance of sgs1Δ mutants to HU is enhanced by the absence of the putative SUMO (Small Ubiquitin MOdifier)-targeted ubiquitin ligase, Uls1, and we demonstrate that Top3 is required for this enhanced resistance and for coordinated breaks and subsequent d-loop formation at forks stalled at the ribosomal DNA (rDNA) replication fork block (RFB). We also find that HU resistance depends on the catalytic activity of the E3 SUMO ligase, Mms21, and includes a rapid Rad51-dependent restart mechanism that is different from the slow Rad51-independent HR fork restart mechanism operative in sgs1Δ ULS1+ mutants. These data support a model in which repair of HU-induced damage in sgs1Δ mutants involves an error-prone break-induced replication pathway but, in the absence of Uls1, shifts to one that is higher-fidelity and involves the formation of Rad51-dependent d-loops.  相似文献   

12.
Ataxia-telangiectasia mutated (ATM) is needed for the initiation of the double-strand break (DSB) repair by homologous recombination (HR). ATM triggers DSB end resection by stimulating the nucleolytic activity of CtIP and MRE11 to generate 3′-ssDNA overhangs, followed by RPA loading and RAD51 nucleofilament formation. Here we show for the first time that ATM is also needed for later steps in HR after RAD51 nucleofilament formation. Inhibition of ATM after completion of end resection did not affect RAD51 nucleofilament formation, but resulted in HR deficiency as evidenced by (i) an increase in the number of residual RAD51/γH2AX foci in both S and G2 cells, (ii) the decrease in HR efficiency as detected by HR repair substrate (pGC), (iii) a reduced SCE rate and (iv) the radiosensitization of cells by PARP inhibition. This newly described role for ATM was found to be dispensable in heterochromatin-associated DSB repair, as KAP1-depletion did not alleviate the HR-deficiency when ATM was inhibited after end resection. Moreover, we demonstrated that ATR can partly compensate for the deficiency in early, but not in later, steps of HR upon ATM inhibition. Taken together, we describe here for the first time that ATM is needed not only for the initiation but also for the completion of HR.  相似文献   

13.
Myocardial infarction triggers oxidative DNA damage, apoptosis and adverse cardiac remodeling in the heart. Small ubiquitin-like modifier (SUMO) proteins mediate post-translational SUMOylation of the cardiac proteins in response to oxidative stress signals. Upregulation of isoform SUMO2 could attenuate myocardial injury via increasing protein SUMOylation. The present study aimed to discover the identity and cardioprotective activities of SUMOylated proteins. A plasmid vector for expressing N-Strep-SUMO2 protein was generated and introduced into H9c2 rat cardiomyocytes. The SUMOylated proteins were isolated with Strep-Tactin® agarose beads and identified by MALDI-TOF-MS technology. As a result, γ-actin was identified from a predominant protein band of ~42 kDa and verified by Western blotting. The roles of SUMO2 and γ-actin SUMOylation were subsequently determined in a mouse model of myocardial infarction induced by ligating left anterior descending coronary artery and H9c2 cells challenged by hypoxia-reoxygenation. In vitro lentiviral-mediated SUMO2 expression in H9c2 cells were used to explore the role of SUMOylation of γ-actin. SUMOylation of γ-actin by SUMO2 was proven to be a new cardioprotective mechanism from the following aspects: 1) SUMO2 overexpression reduced the number of TUNEL positive cells, the levels of 8-OHdG and p-γ-H2ax while promoted the nuclear deposition of γ-actin in mouse model and H9c2 cell model of myocardial infarction; 2) SUMO-2 silencing decreased the levels of nuclear γ-actin and SUMOylation while exacerbated DNA damage; 3) Mutated γ-actin (K68R/K284R) void of SUMOylation sites failed to protect cardiomyocytes against hypoxia-reoxygenation challenge. The present study suggested that SUMO2 upregulation promoted DNA damage repair and attenuated myocardial injury via increasing SUMOylation of γ-actin in the cell nucleus.  相似文献   

14.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a marked predisposition to cancer and elevated genomic instability. The defective protein in BS, BLM, is a member of the RecQ helicase family and is believed to function in various DNA transactions, including in replication, repair, and recombination. Here, we show that both endogenous and overexpressed human BLM accumulates at sites of laser light-induced DNA double-strand breaks within 10s and colocalizes with gammaH2AX and ATM. Like its RecQ helicase family member, WRN, the defective protein in Werner syndrome, dissection of the BLM protein revealed that its HRDC domain is sufficient for its recruitment to the damaged sites. In addition, we confirmed that the C-terminal region spanning amino acids 1250-1292 within the HRDC domain is necessary for BLM recruitment. To identify additional proteins required for the recruitment of BLM, we examined the recruitment of BLM in various mutants generated from chicken DT40 cells and found that the early accumulation of BLM was not dependent on the presence of ATM, RAD17, DNA-PKcs, NBS1, XRCC3, RAD52, RAD54, or WRN. Thus, HRDC domain in DNA helicases is a common early responder to DNA double-strand breaks, enabling BLM and WRN to be involved in DNA repair.  相似文献   

15.
16.
Bloom's syndrome (BS) is a cancer predisposition disorder caused by mutation of the BLM gene, encoding a member of the RecQ helicase family. Although the phenotype of BS cells is suggestive of a role for BLM in repair of stalled or damaged replication forks, thus far there has been no direct evidence that BLM associates with any of the three human replicative DNA polymerases. Here, we show that BLM interacts specifically in vitro and in vivo with p12, the smallest subunit of human POL δ (hPOL δ). The hPOL δ enzyme, as well as the isolated p12 subunit, stimulates the DNA helicase activity of BLM. Conversely, BLM stimulates hPOL δ strand displacement activity. Our results provide the first functional link between BLM and the replicative machinery in human cells, and suggest that BLM might be recruited to sites of disrupted replication through an interaction with hPOL δ. Finally, our data also define a novel role for the poorly characterized p12 subunit of hPOL δ.  相似文献   

17.
Mutations in BLM helicase cause Bloom syndrome, characterized by predisposition to all forms of cancer. We demonstrate that BLM, signal transducer 53BP1, and RAD51 interact during stalled replication. Interactions between the three proteins have functional consequences. Lack of 53BP1 decreases the cell survival and enhanced chromosomal aberration after replication arrest. 53BP1 exhibits both BLM-dependent and -independent anti-recombinogenic functions in human and mouse cells. Both BLM and 53BP1 abrogate endogenous RAD51 foci formation and disrupt RAD51 polymerization. Consequently, loss of BLM and 53BP1 synergistically enhances stress-dependent homologous recombination. These results provide evidence regarding the cooperation between BLM and 53BP1 during maintenance of genomic integrity.  相似文献   

18.
19.
Bloom's syndrome (BS) is a genetic disorder associated with short stature, fertility defects, and a predisposition to the development of cancer. BS cells are characterized by genomic instability; in particular, a high rate of reciprocal exchanges between sister-chromatids and homologous chromosomes. The BS gene product, BLM, is a helicase belonging to the highly conserved RecQ family. BLM is known to form a complex with the RAD51 recombinase, and to act upon DNA intermediates that form during homologous recombination, including D-loops and Holliday junctions. Here, we show that BLM also makes a direct physical association with the RAD51L3 protein (also known as RAD51D), a so-called RAD51 paralog that shows limited sequence similarity to RAD51 itself. This interaction is mediated through the N-terminal domain of BLM. To analyze functional interactions between BLM and RAD51L3, we have purified a heteromeric complex comprising RAD51L3 and a second RAD51 paralog, XRCC2. We show that the RAD51L3-XRCC2 complex stimulates BLM to disrupt synthetic 4-way junctions that model the Holliday junction. We also show that a truncated form of BLM, which retains helicase activity but is unable to bind RAD51L3, is not stimulated by the RAD51L3-XRCC2 complex. Our data indicate that the activity of BLM is modulated through an interaction with the RAD51L3-XRCC2 complex, and that this stimulatory effect on BLM is dependent upon a direct physical association between the BLM and RAD51L3 proteins. We propose that BLM co-operates with RAD51 paralogs during the late stages of homologous recombination processes that serve to restore productive DNA replication at sites of damaged or stalled replication forks.  相似文献   

20.
Ting L  Jun H  Junjie C 《DNA Repair》2010,9(12):1241-1248
Maintenance of genome stability depends on efficient and accurate repair of DNA lesions. Failure to properly repair damaged DNA can cause cell death, mutations and chromosomal instability, which eventually lead to tumorigenesis. The E3 ligase RAD18 is well-known for its function in DNA damage bypass and post-replication repair (PRR) in yeast and vertebrates via its ability to facilitate PCNA mono-ubiquitination at stalled replication forks. However, emerging evidence has also indicated that RAD18 plays an important role in homologous recombination (HR) in mammalian cells, which is an error-free DNA repair pathway that mediates the repair of double-strand breaks (DSBs). Here, we review how RAD18 carries out these distinct functions in response to different types of DNA lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号