首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transposable elements are potent agents of genomic change during evolution, but require access to chromatin for insertion—and not all genes provide equivalent access. To test whether the regulatory features of heat-shock genes render their proximal promoters especially susceptible to the insertion of transposable elements in nature, we conducted an unbiased screen of the proximal promoters of 18 heat-shock genes in 48 natural populations of Drosophila. More than 200 distinctive transposable elements had inserted into these promoters; greater than 96% are P elements. By contrast, few or no P element insertions segregate in natural populations in a “negative control” set of proximal promoters lacking the distinctive regulatory features of heat-shock genes. P element transpositions into these same genes during laboratory mutagenesis recapitulate these findings. The natural P element insertions cluster in specific sites in the promoters, with up to eight populations exhibiting P element insertions at the same position; laboratory insertions are into similar sites. By contrast, a “positive control” set of promoters resembling heat-shock promoters in regulatory features harbors few P element insertions in nature, but many insertions after experimental transposition in the laboratory. We conclude that the distinctive regulatory features that typify heat-shock genes (in Drosophila) are especially prone to mutagenesis via P elements in nature. Thus in nature, P elements create significant and distinctive variation in heat-shock genes, upon which evolutionary processes may act.  相似文献   

3.
4.
The present study extends evidence that Drosophila heat-shock genes are distinctively evolvable because of insertion of transposable elements by examining the genotypic diversity and phenotypic consequences of naturally occurring P element insertions in the proximal promoter regions of two small heat-shock genes. Detailed scrutiny of two populations revealed 16 distinctive P transposable elements collectively segregating in proximal promoters of two small heat-shock genes, Hsp26 and Hsp27. These elements vary in size, orientation and insertion site. Frequencies of P element-containing alleles varied from 5% to 100% in these populations. Two Hsp26 elements chosen for detailed study, R(s)P(26) and D(2)P(m), reduced or abolished Hsp26 expression respectively. The R(s)P(26) element increased or did not affect inducible tolerance of high temperature, increased fecundity, but decreased developmental rate. On the other hand, the D(2)P(m) element decreased thermotolerance and fecundity. In lines subjected to experimental evolution, the allelic frequency of the R(s)P(26)P element varied considerably, and was at lower frequencies in lines selected for increased longevity and for accelerated development than in controls. Transposable element insertions into small Hsp genes in Drosophila populations can have dramatic fitness consequences, and therefore create variation on which selection can act.  相似文献   

5.
It was long thought that solely three different transposable elements (TEs)—the I-element, the P-element, and hobo—invaded natural Drosophila melanogaster populations within the last century. By sequencing the “living fossils” of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.  相似文献   

6.
7.
The evolutionary dynamics of transposable element (TE) insertions have been of continued interest since TE activity has important implications for genome evolution and adaptation. Here, we infer the transposition dynamics of TEs by comparing their abundance in natural D. melanogaster and D. simulans populations. Sequencing pools of more than 550 South African flies to at least 320-fold coverage, we determined the genome wide TE insertion frequencies in both species. We suggest that the predominance of low frequency insertions in the two species (>80% of the insertions have a frequency <0.2) is probably due to a high activity of more than 58 families in both species. We provide evidence for 50% of the TE families having temporally heterogenous transposition rates with different TE families being affected in the two species. While in D. melanogaster retrotransposons were more active, DNA transposons showed higher activity levels in D. simulans. Moreover, we suggest that LTR insertions are mostly of recent origin in both species, while DNA and non-LTR insertions are older and more frequently vertically transmitted since the split of D. melanogaster and D. simulans. We propose that the high TE activity is of recent origin in both species and a consequence of the demographic history, with habitat expansion triggering a period of rapid evolution.  相似文献   

8.
Heat-shock genes have numerous features that ought to predispose them to insertional mutagenesis via transposition. To elucidate the evolvability of heat-shock genes via transposition, we have exploited a local transposition technique and Drosophila melanogaster strains with EPgy2 insertions near the Hsp70 gene cluster at 87A7 to produce numerous novel EPgy2 insertions into these Hsp70 genes. More than 50% of 45 independent insertions were made into two adjacent nucleotides in the proximal promoter at positions -96 and -97, and no insertions were into a coding or 3'-flanking sequence. All inserted transposons were in inverse orientation to the starting transposon. The frequent insertion into nucleotides -96 and -97 is consistent with the DNase hypersensitivity, absence of nucleosomes, flanking GAGA-factor-binding sites, and nucleotide sequence of this region. These experimental insertions recapitulated many of the phenotypes of natural transposition into Hsp70: reduced mRNA expression, less Hsp70 protein, and decreased inducible thermotolerance. The results suggest that the distinctive features of heat-shock promoters, which underlie the massive and rapid expression of heat-shock genes upon heat shock, also are a source of evolutionary variation on which natural selection can act.  相似文献   

9.
Naturally occurring transposable element (TE) insertions that disrupt Drosophila promoters are correlated with modified promoter function and are posited to play a significant role in regulatory evolution, but their phenotypes have not been established directly. To establish the functional consequences of these TE insertions, we created constructs with either TE-bearing or TE-lacking hsp70 promoters fused to a luciferase reporter gene and assayed luciferase luminescence in transiently transfected Drosophila cells. Each of the four TEs reduces luciferase signal after heat shock and heat inducibility of the hsp70 promoter. To test if the differences in hsp70 promoter activity are TE-sequence dependent, we replaced each of the TEs with multiple intergenic sequences of equal length. These replacement insertions similarly reduced luciferase signal, suggesting that the TEs affect hsp70 promoter function by altering promoter architecture. These results are consistent with differences in Hsp70 expression levels, inducible thermotolerance, and fecundity previously associated with the TEs. That two different varieties of TEs in two different hsp70 genes have common effects suggests that TE insertion represents a general mechanism through which selection manipulates hsp70 gene expression.  相似文献   

10.
The "selfish DNA" theory postulates that transposable elements (TEs) are intragenomic parasites, and that natural selection against deleterious effects associated with their presence is the main force preventing their genomic spread in natural populations. In agreement with this model, TEs in Drosophila melanogaster populations are usually found at low frequencies in most genomic locations. Only a few cases of fixation of TE insertions have been reported, usually in regions of low recombination, where selection is expected to be less effective. Here, we report a population genetics study on the apparent fixation of an S-element in a highly recombining region in two natural populations of D. melanogaster. Three similar fragments of an S-element are inserted into the 5' regions of three members of a heat shock gene family, Hsp70 (Hsp70Aa and Hsp70Ab in polytene chromosome band 87A, and Hsp70Bb in 87C). A PCR-based analysis suggests that the insertions are fixed or at high frequencies in the entire species. A population survey of the levels of nucleotide sequence variation at the insertion site in 87C in two natural populations of D. melanogaster provided evidence for reduced levels of variation in the region, normal levels of recombination, and selection, reflected in a significant departure from neutrality of the variant frequency spectrum. This was particularly strong for the S-element inverted repeats (IRs) and suggests that these are of functional significance for the host.  相似文献   

11.
C Kemkemer  A Catalán  J Parsch 《Heredity》2014,112(2):149-155
Genomic analyses of Drosophila species suggest that the X chromosome presents an unfavourable environment for the expression of genes in the male germline. A previous study in D. melanogaster used a reporter gene driven by a testis-specific promoter to show that expression was greatly reduced when the gene was inserted onto the X chromosome as compared with the autosomes. However, a limitation of this study was that only the expression regulated by a single, autosomal-derived promoter was investigated. To test for an increase in expression associated with ‘escaping'' the X chromosome, we analysed reporter gene expression driven by the promoters of three X-linked, testis-expressed genes (CG10920, CG12681 and CG1314) that were inserted randomly throughout the D. melanogaster genome. In all cases, insertions on the autosomes showed significantly higher expression than those on the X chromosome. Thus, even genes whose regulation has adapted to the X-chromosomal environment show increased male germline expression when relocated to an autosome. Our results provide direct experimental evidence for the suppression of X-linked gene expression in the Drosophila male germline that is independent of gene dose.  相似文献   

12.
13.
14.

Background

In the laboratory, the Drosophila melanogaster heat shock protein Hsp90 can buffer the phenotypic effects of genetic variation. Laboratory experiments either manipulate Hsp90 activity pharmacologically, or they induce mutations with strong effects in the gene Hsp83, the single-copy fly gene encoding Hsp90. It is unknown whether observations from such laboratory experiments are relevant in the wild.

Results

We here study naturally occurring mutations in Hsp83, and their effects on fitness and phenotypic buffering in flies derived from wild populations. We examined more than 4500 flies from 42 Drosophila populations distributed world-wide for insertions or deletions of mobile DNA in or near the Hsp83 gene. The insertions we observed occur at low population frequencies, and reduce Hsp83 gene expression. In competition experiments, mutant flies performed much more poorly than wild-type flies. Mutant flies were also significantly less fecund and shorter-lived than wild-type flies, as well as less well buffered against cryptic deleterious variation, as we show through inbreeding experiments. Specifically, in Hsp83 mutant flies female fecundity dropped to much lower levels after inbreeding than in wild-type flies. At even slightly elevated temperatures, inbred mutant Hsp83 populations went extinct, whereas inbred wild-type populations persisted.

Conclusions

Our work shows that Hsp90, a regulator of the stress response and of signaling, helps buffer deleterious variation in fruit flies derived from wild population, and that its buffering role becomes even more important under heat stress.  相似文献   

15.
16.

Background

Transposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe the euchromatic transposable elements in the sequenced strain of this species.

Results

We identified 85 known and eight novel families of transposable element varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial. The density of transposable elements increases an average of 4.7 times in the centromere-proximal regions of each of the major chromosome arms. We found that transposable elements are preferentially found outside genes; only 436 of 1,572 transposable elements are contained within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of transposable elements is found nested within other elements of the same or different classes. Lastly, an analysis of structural variation from different families reveals distinct patterns of deletion for elements belonging to different classes.

Conclusions

This analysis represents an initial characterization of the transposable elements in the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the transposable elements of other organisms can begin to be made. These data have been made available on the Berkeley Drosophila Genome Project website for future analyses.  相似文献   

17.
The Drosophila melanogaster genome contains about 100 copies of the B104 transposable element, which is strongly expressed during embryogenesis. Here we show that B104 expression is restricted to the esophageal and amnioproctodeal regions of the embryo and to the developing mesoderm. Mesoderm-specific B104 expression requires the activity of the mesoderm-determining factors twist and snail. Virtually the same expression patterns were observed in Drosophila yakuba, a species that a separated from D. melanogaster by some 15 million years of evolution. We show that B104 expression is directed by internal sequences of the retrotransposon that are capable of acting as a cis-acting regulatory element in front of a heterologous Drosophila promoter. Our findings suggest that retrotransposon insertions can affect the expression patterns of endogenous genes by adding and distributing specific cis-acting control elements throughout the host genome. We therefore propose that transposable elements in addition to reducing the fitness of their hosts may also provide a rich pool of cis-acting sequences that contribute to the long-term evolutionary potential of the population in a beneficial manner.  相似文献   

18.
Natural populations often exist in spatially diverse environments and may experience variation in the strength and targets of natural selection across their ranges. Drosophila provides an excellent opportunity to study the effects of spatially varying selection in natural populations, as both Drosophila melanogaster and Drosophila simulans live across a wide range of environments in North America. Here, we characterize patterns of variation in transposable elements (TEs) from six populations of D. melanogaster and nine populations of D. simulans sampled from multiple latitudes across North America. We find a nearly twofold excess of TEs in D. melanogaster relative to D. simulans, with this difference largely driven by TEs segregating at the lowest and highest allele frequencies. We find no effect of latitude on either total TE abundance or average TE allele frequencies in either species. Moreover, we show that, as a class of mutations, the most common patterns of TE variation do not coincide with the sampled latitudinal gradient, nor are they consistent with local adaptation acting on environmental differences found in the most extreme latitudes. We also do not find a cline in ancestry for North American D. melanogaster—for either TEs or single nucleotide polymorphisms—suggesting a limited role for demography in shaping patterns of TE variation. Though we find little evidence for widespread clinality among TEs in Drosophila, this does not necessarily imply a limited role for TEs in adaptation. We discuss the need for improved models of adaptation to large‐scale environmental heterogeneity, and how these might be applied to TEs.  相似文献   

19.
Although Hsp70, the principal inducible heat-shock protein of Drosophila melanogaster, has received intense scrutiny in laboratory strains, its variation within natural populations and the consequences of such variation for thermotolerance are unknown. We have characterized variation in first-instar larvae of 20 isofemale lines isolated from a single natural population of D. melanogaster, in which larvae are prone to thermal stress in nature. Hsp70 expression varied more than twofold among lines after induction by exposure to 36°C for one hour, with an estimated proportion of the variation due to genetic differences of 0.24 ± 0.08. Thermotolerance with and without a Hsp70-inducing pretreatment, survival at 25°C, and developmental time also varied significantly. As expected, expression of Hsp70 correlated positively with larval thermotolerance. By contrast, lines in which larval survival was high in the absence of heat stress showed lower than average Hsp70 expression and lower than average inducible thermotolerance. This conditional performance suggests an evolutionary trade-off between thermotolerance and the ability to produce higher concentrations of Hsp70, and survival in a benign environment.  相似文献   

20.
Transposable elements (TEs) are considered to be genomic parasites and their interactions with their hosts have been likened to the coevolution between host and other nongenomic, horizontally transferred pathogens. TE families, however, are vertically inherited as integral segments of the nuclear genome. This transmission strategy has been suggested to weaken the selective benefits of host alleles repressing the transposition of specific TE variants. On the other hand, the elevated rates of TE transposition and high incidences of deleterious mutations observed during the rare cases of horizontal transfers of TE families between species could create at least a transient process analogous to the influence of horizontally transmitted pathogens. Here, we formally address this analogy, using empirical and theoretical analysis to specify the mechanism of how host–TE interactions may drive the evolution of host genes. We found that host TE-interacting genes actually have more pervasive evidence of adaptive evolution than immunity genes that interact with nongenomic pathogens in Drosophila. Yet, both our theoretical modeling and empirical observations comparing Drosophila melanogaster populations before and after the horizontal transfer of P elements, which invaded D. melanogaster early last century, demonstrated that horizontally transferred TEs have only a limited influence on host TE-interacting genes. We propose that the more prevalent and constant interaction with multiple vertically transmitted TE families may instead be the main force driving the fast evolution of TE-interacting genes, which is fundamentally different from the gene-for-gene interaction of host–pathogen coevolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号