首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This essay records a voyage of discovery from the “cradle of cell biology” to the present, focused on the biology of the oldest known cell organelle, the cilium. In the “romper room” of cilia and microtubule (MT) biology, the sliding MT hypothesis of ciliary motility was born. From the “summer of love,” students and colleagues joined the journey to test switch-point mechanisms of motility. In the new century, interest in nonmotile (primary) cilia, never lost from the cradle, was rekindled, leading to discoveries relating ciliogenesis to autophagy and hypotheses of how molecules cross ciliary necklace barriers for cell signaling.  相似文献   

2.
Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build—and subject to exhaustive experimental tests—models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.  相似文献   

3.
4.
First, a brief history is provided of Popper's views on the status of evolutionary biology as a science. The views of some prominent biologists are then canvassed on the matter of falsifiability and its relation to evolutionary biology. Following that, I argue that Popper's programme of falsifiability does indeed exclude evolutionary biology from within the circumference of genuine science, that Popper's programme is fundamentally incoherent, and that the correction of this incoherence results in a greatly expanded and much more realistic concept of what is empirical, resulting in the inclusion of evolutionary biology. Finally, this expanded concept of empirical is applied to two particular problems in evolutionary biology — viz., the species problem and the debate over the theory of punctuated equilibria — and it is argued that both of them are still mainly metaphysical.  相似文献   

5.
Bioinspiration is a promising lens for biology instruction as it allows the instructor to focus on current issues, such as the COVID‐19 pandemic. From social distancing to oxygen stress, organisms have been tackling pandemic‐related problems for millions of years. What can we learn from such diverse adaptations in our own applications? This review uses a seminar course on the COVID‐19 crisis to illustrate bioinspiration as an approach to teaching biology content. At the start of the class, students mind‐mapped the entire problem; this range of subproblems was used to structure the biology content throughout the entire class. Students came to individual classes with a brainstormed list of biological systems that could serve as inspiration for a particular problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). After exploration of relevant biology content, discussion returned to the focal problem. Students dug deeper into the literature in a group project on mask design and biological systems relevant to filtration and transparency. This class structure was an engaging way for students to learn principles from ecology, evolution, behavior, and physiology. Challenges with this course design revolved around the interdisciplinary and creative nature of the structure; for instance, the knowledge of the participants was often stretched by engineering details. While the present class was focused on the COVID‐19 crisis, a course structured through a bioinspired approach can be applied to other focal problems, or subject areas, giving instructors a powerful method to deliver interdisciplinary content in an integrated and inquiry‐driven way.  相似文献   

6.
7.
Interleukin-6 (IL-6) is a critical regulator of the immune system and has been widely implicated in autoimmune disease. Here, we describe the discovery and characterization of olokizumab, a humanized antibody to IL-6. Data from structural biology, cell biology and primate pharmacology demonstrate the therapeutic potential of targeting IL-6 at “Site 3”, blocking the interaction with the signaling co-receptor gp130.  相似文献   

8.
Policymakers should treat DIY‐biology laboratories as legitimate parts of the scientific enterprise and pay attention to the role of community norms. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business, S&S: Ethics

DIY biology – very broadly construed as the practice of biological experiments outside of traditional research environments such as universities, research institutes or companies – has, during the past decade, gained much prominence. This increased attention has raised a number of questions about biosafety and biosecurity, both in the media and by policy makers who are concerned about safety and security lapses in “garage biology”. There are a number of challenges here though when it comes to policies to regulate DIY biology. For a start, the term itself escapes easy definition: synonyms or related terms abound, including garage biotechnology, bio‐hacking, self‐modification/grinding, citizen science, bio‐tinkering, bio‐punk, even transhumanism. Some accounts even use ‘DIY‐bio’ interchangeably with synthetic biology, even though these terms refer to different emerging trends in biology. Some of these terms are more charged than others but each carries its own connotations with regard to practice, norms and legality. As such, conversations about the risk, safety and regulation of DIY‐bio can be fraught.
Synonyms or related terms abound, including garage biotechnology, bio‐hacking, self‐modification/grinding, citizen science, bio‐tinkering, bio‐punk, even transhumanism.
Given the increasing policy discussions about DIY‐bio, it is crucial to consider prevailing practice thoughtfully, and accurately. Key questions that researchers, policy makers and the public need to contemplate include the following: “How do different DIY‐bio spaces exist within regulatory frameworks, and enact cultures of (bio)safety?”, “How are these influenced by norms and governance structures?”, “If something is unregulated, must it follow that it is unsafe?” and “What about the reverse: does regulatory oversight necessarily lead to safer practice?”.The DIY‐bio movement emerged from the convergence of two trends in science and technology. The first one is synthetic biology, which can broadly be defined as a conception of genetic engineering as systematic, modular and programmable. While engineering living organisms is obviously a complex endeavour, synthetic biology has sought to re‐frame it by treating genetic components as inherently modular pieces to be assembled, through rational design processes, into complex but predictable systems. This has prompted many “LEGO” metaphors and a widespread sense of democratisation, making genetic engineering accessible not only to trained geneticists, but also to anyone with an “engineering mindset”.The second, much older, trend stems from hacker‐ and makerspaces, which are – usually not‐for‐profit – community organisations that enable groups of enthusiasts to share expensive or technically complex infrastructure, such as 3D printers or woodworking tools, for their projects. These provide a model of community‐led initiatives based on the sharing of infrastructure, equipment and knowledge. Underpinning these two trends is an economic aspect. Many of the tools of synthetic biology – notably DNA sequencing and synthesis – have seen a dramatic drop in cost, and much of the necessary physical apparatus is available for purchase, often second‐hand, through auction sites.DIY‐bio labs are often set‐up under widely varying management schemes. While some present themselves as community outreach labs focusing on amateur users, others cater specifically to semi‐ or professional members with advanced degrees in the biosciences. Other such spaces act as incubators for biotech startups with an explicitly entrepreneurial culture. Membership agreements, IP arrangements, fees, access and the types of project that are encouraged in each of these spaces can have a profound effect on the science being done.  相似文献   

9.
On the basis of a scientific-philosophical analysis, this paper tries to show that the approaches in current nutritional science—including its subdisciplines which focus on molecular aspects—are predominantly application-oriented. This becomes particularly evident through a number of conceptual problems characterized by the triad of ‘dearth of theoretical foundation,’ ‘particularist research questions,’ and ‘reductionist understanding of nutrition.’ The thesis presented here is that an interpretive framework based on nutritional biology is able to shed constructive light on the fundamental problems of nutritional science. In this context, the establishment of ‘nutritional biology’ as a basic discipline in research and education would be a first step toward recognizing the phenomenon of ‘nutrition’ as an oecic process as a special case of an organism–environment interaction. Modern nutritional science should be substantively grounded on ecological—and therefore systems biology as well as organismic—principles. The aim of nutritional biology, then, should be to develop near-universal ‘law statements’ in nutritional science—a task which presents a major challenge for the current science system.  相似文献   

10.
Traditional forms of higher learning include teaching in the classroom on college campuses and in‐person adult‐focused public outreach events for non‐students. Online college degree programs and public outreach platforms have been steadily emerging, and the COVID‐19 pandemic has, at least temporarily, forced all related ecology and evolutionary biology programs to move to online delivery. Podcasting is a form of online mass communication that is rapidly gaining popularity and has the flexibility to be incorporated into the pedagogical toolbox for the online classroom and remote public outreach programming. Podcasting is also becoming more popular in the ecology and evolutionary biology field. Here, we describe the great potential of podcasting to transform the learning experience, present a case study of success from the United States, provide a table of podcast recommended by ecologist responding to a listserv, and provide a road map for adoption and utilization of podcasting for the future.  相似文献   

11.
Today’s cell biology could be considered a fusion of disciplines that blends advanced genetics, molecular biology, biochemistry, and engineering to answer fundamental as well as medically relevant scientific questions. Accordingly, our understanding of diseases is greatly aided by an existing vast knowledge base of fundamental cell biology. Gunter Blobel captured this concept when he said, “the tremendous acquisition of basic knowledge will allow a much more rational treatment of cancer, viral infection, degenerative disease and mental disease.” In other words, without cell biology can we truly understand, prevent, or effectively treat a disease?

R. M. Perera  相似文献   

12.
A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into ~750-bp fragments. Once trained in assembly of such DNA “building blocks” by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular “lab meeting” sessions help prepare them for future roles in laboratory science.  相似文献   

13.
Plant biology is rapidly entering an era where we have the ability to conduct intricate studies that investigate how a plant interacts with the entirety of its environment. This requires complex, large studies to measure how plant genotypes simultaneously interact with a diverse array of environmental stimuli. Successful interpretation of the results from these studies requires us to transition away from the traditional standard of conducting an array of pairwise t tests toward more general linear modeling structures, such as those provided by the extendable ANOVA framework. In this Perspective, we present arguments for making this transition and illustrate how it will help to avoid incorrect conclusions in factorial interaction studies (genotype × genotype, genotype × treatment, and treatment × treatment, or higher levels of interaction) that are becoming more prevalent in this new era of plant biology.  相似文献   

14.
Prof. Har Gobind Khorana was one of the greatest scientists of the twentieth century. Drawing on his strong roots in organic chemistry, he had a remarkable ability to select and focus his intellect on successfully addressing some of the most important challenges in modern biology in a career spanning nearly 6 decades. His pioneering contributions in gene synthesis and protein structure–function studies, and more broadly in what he termed “chemical biology,” continue to have a major impact on modern biomedical science.  相似文献   

15.
Renewed efforts in tuberculosis (TB) research have led to important new insights into the biology and epidemiology of this devastating disease. Yet, in the face of the modern epidemics of HIV/AIDS, diabetes, and multidrug resistance—all of which contribute to susceptibility to TB—global control of the disease will remain a formidable challenge for years to come. New high-throughput genomics technologies are already contributing to studies of TB''s epidemiology, comparative genomics, evolution, and host–pathogen interaction. We argue here, however, that new multidisciplinary approaches—especially the integration of epidemiology with systems biology in what we call “systems epidemiology”—will be required to eliminate TB.  相似文献   

16.
The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell’s power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely “systems therapeutic”, can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics”. A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S2RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S2RM technology, to develop a new class of therapeutics called “systems therapeutics.” Given the ubiquitous and powerful nature of innate S2RM-based healing in the human body, this “systems therapeutic” approach using S2RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.  相似文献   

17.
Molecular architecture of bacteriophage T4   总被引:4,自引:0,他引:4  
In studying bacteriophage T4—one of the basic models of molecular biology for several decades—there has come a Renaissance, and this virus is now actively used as object of structural biology. The structures of six proteins of the phage particle have recently been determined at atomic resolution by X-ray crystallography. Three-dimensional reconstruction of the infection device—one of the most complex multiprotein components—has been developed on the basis of cryo-electron microscopy images. The further study of bacteriophage T4 structure will allow a better understanding of the regulation of protein folding, assembly of biological structures, and also mechanisms of functioning of the complex biological molecular machines.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1463–1476.Original Russian Text Copyright © 2004 by Mesyanzhinov, Leiman, Kostyuchenko, Kurochkina, Miroshnikov, Sykilinda, Shneider.  相似文献   

18.
While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by “building and breaking it” via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the “Vision and Change” call to action in undergraduate biology education by providing a hands-on approach to biology.  相似文献   

19.
Editorial     
These are heady times. As the new millennium dawns, the field of zoology is more exciting than ever. Phylogenetic relations among animals are rapidly being refined or revised in light of new data and powerful new analyses. These revelations in turn are rekindling interest in the function, development, and evolution of animals from all branches of the zoological tree. Tools and insights derived from work on a few model organisms are being applied widely to fill in significant gaps in our knowledge about how the astonishing diversity of animal characteristics evolved.Paralleling this new excitement is an upheaval in scientific publishing. Increasingly specialized journals are sprouting up worldwide as publishers rush to embrace emerging areas of excitement. Electronic communication is re-defining expectations about how new knowledge is disseminated both in format and in mode of transmission and about the time from submission to publication. For established journals to survive, they too must evolve.This journal, ZOOLOGY, is evolving to meet the needs and expectations of the modern community of animal biologists. It aims to promote research like that of it's founder J.W. Spengel — that explicitly emphasizes comparative aspects of animal biology. With the rapid growth of phylogenetic information, ZOOLOGY now offers a venue where the full impact of recent phylogenetic advances on our understanding of animal form, function, development, and evolution can be addressed. An ambitious new group of editors, a new advisory board, and a professionally staffed editorial office, are working to rejuvenate ZOOLOGY as an internationally recognized leader in comparative animal biology.ZOOLOGY has a distinguished place in the pantheon of animal biology journals. It ranks among the oldest continuously published journals in Germany. Founded in 1886 as Zoologische Jahrbücher it quickly rose to prominence among European zoological journals. In the early 1990's, after political and social upheavaling some European countries and after the reunification of Germany, the journal took a more international approach under a new title, ZOOLOGY — ANALYSIS OF COMPLEX SYSTEMS (ZACS). For the last four years, ZOOLOGY has also worked in close cooperation with the German Zoological Society and this tradition will continue. Once each year, it will publish review lectures presented at the annual meeting of the Society. A supplement to ZOOLOGY, containing the abstracts of oral and poster presentations of the annual meeting, will also be produced in conjunction with the German Zoological Society.But the new ZOOLOGY also recognizes the increasing importance of rapid and international communication in all areas of animal biology. It therefore aims to reduce publication time drastically and to enhance the speed and rigor of the review process. The new editors and editorial board are committed to maintaining the highest scientific standards and also to remaining flexible enough to adjust to the ever changing field of animal biology. Recognizing the increasing importance of rapid, effective, international communication, the new ZOOLOGY will offer:— the highest scientific standards— a short review time— a publication time schedule of three months after acceptance— color plates free of charge (at the editors' discretion)— an online version published in advance of the printed journal— free E-mail Table of Contents alerts so papers are widely publicized— papers abstracted/indexed by all the major scientific indexing servicesAs the new cover and the more accessible layout inside this issues show, the change has already begun. The future holds great promise for animal biology. Join us as Zoology strives to fulfil that promise.Spring 2001J. Matthias StarckThomas C. BoschA. Richard PalmerKiyokazu Agata  相似文献   

20.
Epigenetic alterations are a hallmark of aging and age‐related diseases. Computational models using DNA methylation data can create “epigenetic clocks” which are proposed to reflect “biological” aging. Thus, it is important to understand the relationship between predictive clock sites and aging biology. To do this, we examined over 450,000 methylation sites from 9,699 samples. We found ~20% of the measured genomic cytosines can be used to make many different epigenetic clocks whose age prediction performance surpasses that of telomere length. Of these predictive sites, the average methylation change over a lifetime was small (~1.5%) and these sites were under‐represented in canonical regions of epigenetic regulation. There was only a weak association between “accelerated” epigenetic aging and disease. We also compare tissue‐specific and pan‐tissue clock performance. This is critical to applying clocks both to new sample sets in basic research, as well as understanding if clinically available tissues will be feasible samples to evaluate “epigenetic aging” in unavailable tissues (e.g., brain). Despite the reproducible and accurate age predictions from DNA methylation data, these findings suggest they may have limited utility as currently designed in understanding the molecular biology of aging and may not be suitable as surrogate endpoints in studies of anti‐aging interventions. Purpose‐built clocks for specific tissues age ranges or phenotypes may perform better for their specific purpose. However, if purpose‐built clocks are necessary for meaningful predictions, then the utility of clocks and their application in the field needs to be considered in that context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号