首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophosphatidic acid (LPA) is a ligand of multiple G protein–coupled receptors. The LPA1–3 receptors are members of the endothelial cell differentiation gene (Edg) family. LPA4/p2y9/GPR23, a member of the purinergic receptor family, and recently identified LPA5/GPR92 and p2y5 are structurally distant from the canonical Edg LPA receptors. Here we report targeted disruption of lpa4 in mice. Although LPA4-deficient mice displayed no apparent abnormalities, LPA4-deficient mouse embryonic fibroblasts (MEFs) were hypersensitive to LPA-induced cell migration. Consistent with negative modulation of the phosphatidylinositol 3 kinase pathway by LPA4, LPA4 deficiency potentiated Akt and Rac but decreased Rho activation induced by LPA. Reconstitution of LPA4 converted LPA4-negative cells into a less motile phenotype. In support of the biological relevance of these observations, ectopic expression of LPA4 strongly inhibited migration and invasion of human cancer cells. When coexpressed with LPA1 in B103 neuroblastoma cells devoid of endogenous LPA receptors, LPA4 attenuated LPA1-driven migration and invasion, indicating functional antagonism between the two subtypes of LPA receptors. These results provide genetic and biochemical evidence that LPA4 is a suppressor of LPA-dependent cell migration and invasion in contrast to the motility-stimulating Edg LPA receptors.  相似文献   

2.
3.

Background

Lysophosphatidic acid (LPA) is a local mediator that exerts its actions through G protein coupled receptors. Knowledge on the regulation of such receptors is scarce to date. Here we show that bidirectional cross-talk exits between LPA1 and EGF receptors.

Methods

C9 cells expressing LPA1 receptor fussed to the enhanced green fluorescent protein were used. We studied intracellular calcium concentration, Akt/PKB phosphorylation, LPA1 and EGF receptor phosphorylation.

Results

EGF diminished LPA-mediated intracellular calcium response and induced LPA1 receptor phosphorylation, which was sensitive to protein kinase C inhibitors. Angiotensin II and LPA induced EGF receptor transactivation as evidenced by Akt/PKB phosphorylation through metalloproteinase-catalyzed membrane shedding of heparin-binding EGF and autocrine/paracrine activation of EGF receptors. This process was found to be of major importance in angiotensin II-induced LPA1 receptor phosphorylation. Attempts to define a role for EGF receptor transactivation in homologous LPA1 receptor desensitization and phosphorylation suggested that G protein-coupled receptor kinases are the major players in this process, overshadowing other events.

Conclusions

EGF receptors and LPA1 receptors are engaged in an intense liaison, in that EGF receptors are capable of modulating LPA1 receptor function through phosphorylation cascades. EGF transactivation plays a dual role: it mediates some LPA actions, and it modulates LPA1 receptor function in inhibitory fashion.

General significance

EGF and LPA receptors coexist in many cell types and play key roles in maintaining the delicate equilibrium that we call health and in the pathogenesis of many diseases. The intense cross-talk described here has important physiological and pathophysiological implications.  相似文献   

4.

Results

The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes.

Conclusion

Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.  相似文献   

5.
Lysophosphatidic acid (LPA) is a simple biophysical lipid which interacts with at least six subtypes of G protein-coupled LPA receptors (LPA1–LPA6). In cancer cells, LPA signaling via LPA receptors is involved in the regulation of malignant properties, such as cell growth, motility, and invasion. The aim of this study was to assess whether LPA receptors regulate cellular functions of fibrosarcoma cells treated with anticancer drug. HT1080 cells were maintained by the stepwise treatment of cisplatin (CDDP) at a range of 0.01 to 1.0 µM for approximately 6 months. The cell motile and invasive activities of long-term CDDP-treated (HT-CDDP) cells were significantly stimulated by LPA treatment, while HT-CDDP cells in the static state showed the low cell motile and invasive activities in comparison with HT1080 cells. Since the expression level of LPAR2 gene was markedly elevated in HT-CDDP cells, LPA2 knockdown cells were generated from HT-CDDP cells. The cell motile and invasive activities of HT-CDDP cells were reduced by LPA2 knockdown. In colony assay, large-sized colonies formed by long-term CDDP treatment were suppressed by LPA2 knockdown. In addition, LPA2 knockdown cells reduced LPA production by autotaxin (ATX), correlating with ATX expression level. These results suggest that LPA signaling via LPA2 may play an important role in the regulation of cellular functions in HT1080 cells treated with CDDP.  相似文献   

6.
7.
We describe an efficient synthesis of metabolically stabilized sn-2 radyl phosphorothioate analogs of lysophosphatidic acid (LPA), and the determination of the agonist activity of each analog for the six LPA receptors (LPA1–6) using a recently developed TGFα shedding assay. In general, the sn-2 radyl OMPT analogs showed similar agonist activities to the previous 1-oleoyl-2-O-methyl-glycerophosphothioate (sn-1 OMPT) analogs for LPA1–6 receptors. In most cases, the sn-2 radyl-OMPT analogs were more potent agonists than LPA itself. Most importantly, sn-2 alkyl OMPT analogs were very potent LPA5 and LPA6 agonists. The availability of sn-2 radyl OPMT analogs further refines the structure–activity relationships for ligand–receptor interactions for this class of GPCRs.  相似文献   

8.
Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA1–6). LPA receptor type 1 (LPA1) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA1 is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA1 is known to induce IL-6 and IL-8 secretion, as also do LPA2 and LPA3. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA1,2,3,6; MDA-MB-231: LPA1,2; MCF-7: LPA2,6). Among the set of genes upregulated by LPA only in LPA1-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA1–3 antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA1 (MDA-B02/LPA1) and downregulated for LPA1 (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA1 and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA1. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA1 activation state in patients receiving anti-LPA1 therapies.  相似文献   

9.

Introduction

Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA1–6). Recently, we reported that abrogation of LPA receptor 1 (LPA1) ameliorated murine collagen-induced arthritis, probably via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the importance of the LPA–LPA1 axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients.

Methods

FLSs were prepared from synovial tissues of RA patients. Expression of LPA1–6 was examined by quantitative real-time RT-PCR. Cell surface LPA1 expression was analyzed by flow cytometry. Cell proliferation was analyzed using a cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by flow cytometry.

Results

The expression of LPA1 mRNA and cell surface LPA1 was higher in RA FLSs than in FLSs from osteoarthritis tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3 by FLSs, which were suppressed by an LPA1 inhibitor (LA-01). Ki16425, another LPA1 antagonist, also suppressed IL-6 production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA. LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA1 inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA1 antagonist.

Conclusions

Collectively, these results indicate that LPA–LPA1 signaling contributes to the activation of RA FLSs.  相似文献   

10.
Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.  相似文献   

11.
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein‐coupled receptors: LPA1–LPA6. LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [35S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1‐null mice (a variant of LPA1‐null) lack [35S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI‐IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors.

  相似文献   


12.
In this investigation, the role of hippocampal lysophosphatidic acid (LPA) receptors in the regulation of kainic acid (KA)-induced neurotoxicity was investigated. KA (0.07 μg) intracerebroventricular (i.c.v.) administration increased hippocampal Lpar1, 2, 3, and 5 mRNA levels. In the immunohistochemical study, alteration of LPA1 or LPA3 immunoreactivity was different depending on the hippocampal regions, such as CA1, CA2, CA3, and dentate gyrus. In addition, the i.c.v. pretreatment with LPA1 and LPA3 antagonists, such as VPC12249 (0.05 μg) and VPC32183 (0.05 μg) attenuated KA-induced neuronal cell death in the hippocampal CA3 region. However, the i.c.v. 18:1 LPA (0.05 μg) pretreatment aggravated KA-induced neuronal cell death in the hippocampal CA3 region. Our results suggest that LPA receptors, such as LPA1 and LPA3 activation might play an important role in the regulation of KA-induced neuronal cell death in the hippocampal CA3 region.  相似文献   

13.
Lysophosphatidic acid (LPA) mediates a variety of biological functions via the binding of G protein-coupled LPA receptors (LPA receptor-1 (LPA1) to LPA6). This study aimed to investigate the roles of LPA2 and LPA3 in the modulation of chemoresistance to anticancer drug in lung cancer A549 cells. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 2 days. The cell survival rate to CDDP of A549 cells was significantly elevated by an LPA2 agonist, GRI-977143. To evaluate the roles of LPA2-mediated signaling in cell survival during tumor progression, highly migratory (A549-R10) cells were generated from A549 cells. In the presence of GRI-977143, the cell survival rate to CDDP of A549-R10 cells were markedly higher than that of A549 cells, correlating with LPAR2 expression level. Moreover, to assess the effects of long-term anticancer drug treatment on cell survival, the long-term CDDP treated (A549-CDDP) cells were established from A549 cells. The cell survival rate to CDDP of A549-CDDP cells was elevated by GRI-977143. Since LPAR3 expression level was significantly higher in A549-CDDP cells than in A549 cells, we investigated the roles of LPA3 in the cell survival to CDDP of A549 cells, using an LPA3 agonist, 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate ((2S)-OMPT). The cell survival rate to CDDP of A549 cells was significantly reduced by (2S)-OMPT treatment. In the presence of (2S)-OMPT, the cell survival rate to CDDP of A549 cells was elevated by LPA3 knockdown. These results suggest that LPA signaling via LPA2 and LPA3 is involved in the regulation of chemoresistance in A549 cells treated with CDDP.  相似文献   

14.
Lysophosphatidic acid (LPA), a simple bioactive phospholipid, is present in biological fluids such as plasma and bronchoalveolar lavage (BAL). It appears to have both pro- and anti-inflammatory roles in inflammatory lung diseases. Exogenous LPA promotes inflammatory responses by regulating the expression of chemokines, cytokines, and cytokine receptors in lung epithelial cells. In addition to the modulation of inflammatory responses, LPA regulates cytoskeleton rearrangement and confers protection against lung injury by enhancing lung epithelial cell barrier integrity and remodeling. The biological effects of LPA are mediated through its cell surface G-protein coupled LPA1–7 receptors. The roles of LPA receptors in lung fibrosis, asthma, and acute lung injury have been investigated using genetically engineered LPA receptor deficient mice and there appears to be a definitive role for endogenous LPA and its receptors in the pathogenesis of pulmonary inflammatory diseases. This review summarizes recent reports on the role of LPA and its receptors in the regulation of lung epithelial inflammatory responses and remodeling. This article is part of a Special Issue entitled: Advances in Lysophospholipid Research.  相似文献   

15.
Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors and mediate a variety of cellular responses through the binding of LPA. So far, six types of LPA receptors (LPA receptor-1 (LPA1) to LPA6) have been identified. Recently, it has been demonstrated that each LPA receptor has opposite effects on malignant property of cancer cells. In this study, to evaluate an involvement of LPA receptors on angiogenic process in mammary tumor cells, we generated Lpar1- and Lpar3-expressing (FM3A-a1 and FM3A-a3A9, respectively) cells from FM3A cells, and investigated the effects on cell proliferation and migration abilities of endothelial F-2 cells by those cells. In Vegf-A and Vegf-C genes, FM3A-a1 cells indicated high expression and FM3A-a3A9 cells showed low expression, compared with control cells. When F-2 cells were cultured with a supernatant from FM3A-a1 cells, the cell growth rate and migration ability of F-2 cells was significantly higher than control cells. By contrast, a supernatant from FM3A-a3A9 cells significantly inhibited those abilities of F-2 cells. These results suggest that LPA1 and LPA3 may play opposite roles on the regulation of endothelial cells in mouse mammary tumor FM3A cells.  相似文献   

16.
Lysphosphatidic acid (LPA) is a major natural bioactive lipid mediator whose biological functions affect multiple organs. These include bone as demonstrated by global Lpar1-knockout mice (Lpar1−/−) which present a bone growth defect. LPA acts on all bone cells including osteoblasts, that are responsible for bone formation, and osteoclasts, which are specialized cells that resorb bone. LPA appears as a potential new coupling molecule during bone remodeling. LPA1 is the most ubiquitous LPA receptor among the six LPA receptor family members (LPA16). To better understand the specific role of LPA via its receptor LPA1 in osteoblastic cell lineage we generated osteoblast-specific Lpar1 knockout mice (Lpar1-∆Ob) by crossing Lpar1flox/flox and Osx:Cre+ mouse lines. Lpar1-∆Ob mice do not recapitulate the bone defects of Lpar1−/− mice but revealed reduced bone mineralization and decreased cortical thickness, as well as increased bone porosity associated with an augmentation in the lacunae areas of osteocyte and their apoptotic yield. In vitro, primary Lpar1-∆Ob and immortalized cl1-Ob-Lpar1−/− osteoblasts revealed a remarkable premature expression of alkaline phosphatase, reduced cell proliferation associated with decreased YAP-P nuclear accumulation, and reduced mineralization activity. Osteocyte specification is markedly impaired as demonstrated by reduced expression of early (E11) and late (DMP1, DKK1, SOST) osteocyte markers ex vivo in enriched osteocytic fractions of Lpar1-∆Ob mouse bone explants. In addition, E11 expression and dendrite formation induced by FGF2 are markedly impaired in both primary Lpar1-∆Ob and immortalized cl1-Ob-Lpar1−/− osteoblasts. Taken together these results suggest a new role for LPA in bone mass control via bone mineralization and osteocyte function.  相似文献   

17.
Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1–6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1−/− mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1−/− mice but not in Lpar2−/− and Lpar3−/− animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1−/− osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP+ osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss.  相似文献   

18.
Lysophosphatidic acid (LPA) is a major constituent of blood and is involved in a variety of physiological and pathophysiological processes. LPA signals via the ubiquitously expressed G protein-coupled receptors (GPCRs), LPA1 and LPA2 that are specific for LPA. However, in large, the molecular mechanisms that regulate the signalling of these receptors are unknown. We show that the small GTPase RalA associates with both LPA1 and LPA2 in human embryonic kidney (HEK 293) cells and that stimulation of LPA1 receptors with LPA triggers the activation of RalA. While RalA was not found to play a role in the endocytosis of LPA receptors, we reveal that LPA1 receptor stimulation promoted Ral-dependent phospholipase C activity. Furthermore, we found that GRK2 is required for the desensitization of LPA1 and LPA2 and have identified a novel interaction between RalA and GRK2, which is promoted by LPA1 receptor activity. Taken together, these results establish RalA and GRK2 as key regulators of LPA receptor signalling and demonstrate for the first time that LPA1 activity facilitates the formation of a novel protein complex between these two proteins.  相似文献   

19.
Lysophosphatidic acid (LPA) receptors (LPA1 to LPA6) indicate a variety of cellular responses, such as cell proliferation, migration, differentiation, and morphogenesis. However, the role of each LPA receptor is not functionally equivalent. Ethionine, an ethyl analog of methionine, is well known to be one of the potent liver carcinogens in rats. In this study, to assess whether ethionine may regulate cell motile activity through LPA receptors, rat liver epithelial (WB-F344) cells were treated with ethionine for 48 h. In cell motility assay with a cell culture insert, the treatment of ethionine at 1.0 and 10 μM enhanced significantly high cell motile activity, compared with untreated cells. The expression levels of LPA receptor genes in cells treated with ethionine were measured by quantitative real time RT-PCR analysis. The expression of the Lpar3 gene in ethionine-treated cells was significantly higher than that in untreated cells. Furthermore, to confirm an involvement of LPA3 on cell motility increased by ethionine, the Lpar3 knockdown cells were also used. The cell motile activity by ethionine was completely suppressed in the Lpar3 knockdown cells. These results suggest that LPA signaling through LPA3 may be involved in cell motile activity stimulated by ethionine in WB-F344 cells.  相似文献   

20.
Lysophosphatidic acid (LPA) is the simplest phospholipid yet possesses myriad biological functions. Until 2003, the functions of LPA were thought to be elicited exclusively by three subtypes of the endothelial differentiation gene (Edg) family of G protein-coupled receptors — LPA1, LPA2, and LPA3. However, several biological functions of LPA could not be assigned to any of these receptors indicating the existence of one or more additional LPA receptor(s). More recently, the discovery of a second cluster of LPA receptors which includes LPA4, LPA5, and LPA6 has paved the way for new avenues of LPA research. Analyses of these non-Edg family LPA receptors have begun to fill in gaps to understand biological functions of LPA such as platelet aggregation and vascular development that could not be ascribed to classical Edg family LPA receptors and are also unveiling new biological functions. Here we review recent progress in the non-Edg family LPA receptor research, with special emphasis on the pharmacology, signaling, and physiological roles of this family of receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号