共查询到20条相似文献,搜索用时 15 毫秒
1.
Yusuke Mori Yoko Inoue Sayori Tanaka Satoka Doda Shota Yamanaka Hiroki Fukuchi Yasuhiko Terada 《PloS one》2015,10(10)
The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs). Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM) around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding–deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2. 相似文献
2.
Zou X Ji C Jin F Liu J Wu M Zheng H Wang Y Li X Xu J Gu S Xie Y Mao Y 《Genes & genetic systems》2004,79(3):177-182
Two novel splice variants of CDK5RAP1, named CDK5RAP1_v3 and CDK5RAP1_v4, were isolated through the large-scale sequencing analysis of a human fetal brain cDNA library. The CDK5RAP1_v3 and CDK5RAP1_v4 cDNAs are 1923bp and 1792bp in length, respectively. Sequence analysis revealed that CDK5RAP1_v4 lacked 1 exon, which was present in CDK5RAP1_v3, with the result that these cDNAs encoded different putative proteins. The deduced proteins were 574 amino acids (designated as CDK5RAP1_v3) and 426 amino acids (CDK5RAP1_v4) in length, and shared the 420 N-terminal amino acids. RT-PCR analysis showed that human CDK5RAP1_v3 was widely expressed in human tissues. The expression level of CDK5RAP1_v3 was relatively high in placenta and lung, whereas low levels of expression were detected in heart, brain, liver, skeletal muscle, pancreas, spleen, thymus, small intestine and peripheral blood leukocytes. In contrast, human CDK5RAP1_v4 was mainly expressed in brain, placenta and testis. 相似文献
3.
4.
CDK5RAP2 is a centrosomal protein known to be involved in the regulation of the γ-tubulin ring complex and thus the organization of microtubule arrays. However, the mechanism by which CDK5RAP2 is itself recruited to centrosomes is poorly understood. We report here that CDK5RAP2 displays highly dynamic attachment to centrosomes in a microtubule-dependent manner. CDK5RAP2 associates with the retrograde transporter dynein-dynactin and contains a sequence motif that binds to dynein light chain 8. Significantly, disruption of cellular dynein-dynactin function reduces the centrosomal level of CDK5RAP2. These results reveal a key role of the dynein-dynactin complex in the dynamic recruitment of CDK5RAP2 to centrosomes. 相似文献
5.
6.
Reiter V Matschkal DM Wagner M Globisch D Kneuttinger AC Müller M Carell T 《Nucleic acids research》2012,40(13):6235-6240
The unusual cyclin-dependent protein kinase 5 (CDK5) was discovered based on its sequence homology to cell cycle regulating CDKs. CDK5 was found to be active in brain tissues, where it is not involved in cell cycle regulation but in the regulation of neuronal cell differentiation and neurocytoskeleton dynamics. An aberrant regulation of CDK5 leads to the development of various neurodegenerative diseases including Alzheimer's disease. Although CDK5 is not regulated by cyclins, its activity does depend on the association with a protein activator and the presence or absence of further inhibitory factors. Recently, CDK5RAP1 was discovered to inhibit the active CDK5 kinase. Here, we show that CDK5RAP1 is a radical SAM enzyme, which postsynthetically converts the RNA modification N6-isopentenyladenosine (i(6)A) into 2-methylthio-N6-isopentenyladenosine (ms(2)i(6)A). This conversion is surprisingly not limited to mitochondrial tRNA, where the modification was known to exist. Instead, CDK5RAP1 introduces the modification also into nuclear RNA species establishing a link between postsynthetic kinase-based protein modification and postsynthetic RNA modification. 相似文献
7.
8.
9.
Zhe Wang Tao Wu Lin Shi Lin Zhang Wei Zheng Jianan Y. Qu Ruifang Niu Robert Z. Qi 《The Journal of biological chemistry》2010,285(29):22658-22665
As the primary microtubule-organizing centers, centrosomes require γ-tubulin for microtubule nucleation and organization. Located in close vicinity to centrosomes, the Golgi complex is another microtubule-organizing organelle in interphase cells. CDK5RAP2 is a γ-tubulin complex-binding protein and functions in γ-tubulin attachment to centrosomes. In this study, we find that CDK5RAP2 localizes to the Golgi complex in an ATP- and centrosome-dependent manner and associates with Golgi membranes independently of microtubules. CDK5RAP2 contains a centrosome-targeting domain with its core region highly homologous to the Motif 2 (CM2) of centrosomin, a functionally related protein in Drosophila. This sequence, referred to as the CM2-like motif, is also conserved in related proteins in chicken and zebrafish. Therefore, CDK5RAP2 may undertake a conserved mechanism for centrosomal localization. Using a mutational approach, we demonstrate that the CM2-like motif plays a crucial role in the centrosomal and Golgi localization of CDK5RAP2. Furthermore, the CM2-like motif is essential for the association of the centrosome-targeting domain to pericentrin and AKAP450. The binding with pericentrin is required for the centrosomal and Golgi localization of CDK5RAP2, whereas the binding with AKAP450 is required for the Golgi localization. Although the CM2-like motif possesses the activity of Ca2+-independent calmodulin binding, binding of calmodulin to this sequence is dispensable for centrosomal and Golgi association. Altogether, CDK5RAP2 may represent a novel mechanism for centrosomal and Golgi localization. 相似文献
10.
John S. Y. Park Marie-Katrina Lee SungMyung Kang Yan Jin Songbin Fu Jesusa L. Rosales Ki-Young Lee 《PloS one》2015,10(11)
CDK5RAP2 is one of the primary microcephaly genes that are associated with reduced brain size and mental retardation. We have previously shown that human CDK5RAP2 exists as a full-length form (hCDK5RAP2) or an alternatively spliced variant form (hCDK5RAP2-V1) that is lacking exon 32. The equivalent of hCDK5RAP2-V1 has been reported in rat and mouse but the presence of full-length equivalent hCDK5RAP2 in rat and mouse has not been examined. Here, we demonstrate that rat expresses both a full length and an alternatively spliced variant form of CDK5RAP2 that are equivalent to our previously reported hCDK5RAP2 and hCDK5RAP2-V1, repectively. However, mouse expresses only one form of CDK5RAP2 that is equivalent to the human and rat alternatively spliced variant forms. Knowledge of this expression of different forms of CDK5RAP2 in human, rat and mouse is essential in selecting the appropriate model for studies of CDK5RAP2 and primary microcephaly but our findings further indicate the evolutionary divergence of mouse from the human and rat species. 相似文献
11.
12.
Nadine Kraemer Ethiraj Ravindran Sami Zaqout Gerda Neubert Detlev Schindler Olaf Ninnemann Ralph Gr?f Andrea EM Seiler Angela M Kaindl 《Cell cycle (Georgetown, Tex.)》2015,14(13):2044-2057
Biallelic mutations in the gene encoding centrosomal CDK5RAP2 lead to autosomal recessive primary microcephaly (MCPH), a disorder characterized by pronounced reduction in volume of otherwise architectonical normal brains and intellectual deficit. The current model for the microcephaly phenotype in MCPH invokes a premature shift from symmetric to asymmetric neural progenitor-cell divisions with a subsequent depletion of the progenitor pool. The isolated neural phenotype, despite the ubiquitous expression of CDK5RAP2, and reports of progressive microcephaly in individual MCPH cases prompted us to investigate neural and non-neural differentiation of Cdk5rap2-depleted and control murine embryonic stem cells (mESC). We demonstrate an accumulating proliferation defect of neurally differentiating Cdk5rap2-depleted mESC and cell death of proliferative and early postmitotic cells. A similar effect does not occur in non-neural differentiation into beating cardiomyocytes, which is in line with the lack of non-central nervous system features in MCPH patients. Our data suggest that MCPH is not only caused by premature differentiation of progenitors, but also by reduced propagation and survival of neural progenitors. 相似文献
13.
14.
Usefulness of CDK5RAP3, CCNB2, and RAGE genes for the diagnosis of lung adenocarcinoma 总被引:1,自引:0,他引:1
We used oligonucleotide microarrays with probe sets to 22,283 genes to analyze the gene expression profile of lung adenocarcinoma. Cancerous and noncancerous tissue samples were obtained from 23 patients with stage I or II lung cancer; 18 tissue pairs and 5 cancerous tissues. A list of 2065 genes that differentiate between cancerous and noncancerous tissues was generated using Winsorized paired t-tests. We analyzed CDK5RAP3 and CCNB2, which are involved in cell cycle progression, and RAGE. The first 2 of these 3 genes proved to be overexpressed in tumor tissue, whereas the RAGE gene was suppressed in tumor tissue. When CDK5RAP3 and CCNB2 were examined in individual patients we found that in cases where one of these genes was only slightly overexpressed the other was highly overexpressed. The combined expression of the 2 cell cycle genes was found to be statistically significant for differentiating between cancerous and noncancerous tissues. Inclusion of the data for the RAGE gene made the differentiation more powerful. The gene expression ratio gave a clear result: when CDK5RAP3 was expressed more than RAGE, the tissue was carcinomatous, and vice versa. We therefore conclude that these 3 genes may be used as a very reliable biomarker of lung adenocarcinoma. 相似文献
15.
CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex 下载免费PDF全文
Microtubule nucleation and organization by the centrosome require gamma-tubulin, a protein that exists in a macromolecular complex called the gamma-tubulin ring complex (gammaTuRC). We report characterization of CDK5RAP2, a novel centrosomal protein whose mutations have been linked to autosomal recessive primary microcephaly. In somatic cells, CDK5RAP2 localizes throughout the pericentriolar material in all stages of the cell cycle. When overexpressed, CDK5RAP2 assembled a subset of centrosomal proteins including gamma-tubulin onto the centrosomes or under the microtubule-disrupting conditions into microtubule-nucleating clusters in the cytoplasm. CDK5RAP2 associates with the gammaTuRC via a short conserved sequence present in several related proteins found in a range of organisms from fungi to mammals. The binding of CDK5RAP2 is required for gammaTuRC attachment to the centrosome but not for gammaTuRC assembly. Perturbing CDK5RAP2 function delocalized gamma-tubulin from the centrosomes and inhibited centrosomal microtubule nucleation, thus leading to disorganization of interphase microtubule arrays and formation of anastral mitotic spindles. Together, CDK5RAP2 is a pericentriolar structural component that functions in gammaTuRC attachment and therefore in the microtubule organizing function of the centrosome. Our findings suggest that centrosome malfunction due to the CDK5RAP2 mutations may underlie autosomal recessive primary microcephaly. 相似文献
16.
Xidi Wang Patrick Sipila Zizhen Si Jesusa L. Rosales Xu Gao Ki-Young Lee 《Cell death & disease》2022,13(1)
Developmental disorders characterized by small body size have been linked to CDK5RAP2 loss-of-function mutations, but the mechanisms underlying which remain obscure. Here, we demonstrate that knocking down CDK5RAP2 in human fibroblasts triggers premature cell senescence that is recapitulated in Cdk5rap2an/an mouse embryonic fibroblasts and embryos, which exhibit reduced body weight and size, and increased senescence-associated (SA)-β-gal staining compared to Cdk5rap2+/+ and Cdk5rap2+/an embryos. Interestingly, CDK5RAP2-knockdown human fibroblasts show increased p53 Ser15 phosphorylation that does not correlate with activation of p53 kinases, but rather correlates with decreased level of the p53 phosphatase, WIP1. Ectopic WIP1 expression reverses the senescent phenotype in CDK5RAP2-knockdown cells, indicating that senescence in these cells is linked to WIP1 downregulation. CDK5RAP2 interacts with GSK3β, causing increased inhibitory GSK3β Ser9 phosphorylation and inhibiting the activity of GSK3β, which phosphorylates β-catenin, tagging β-catenin for degradation. Thus, loss of CDK5RAP2 decreases GSK3β Ser9 phosphorylation and increases GSK3β activity, reducing nuclear β-catenin, which affects the expression of NF-κB target genes such as WIP1. Consequently, loss of CDK5RAP2 or β-catenin causes WIP1 downregulation. Inhibition of GSK3β activity restores β-catenin and WIP1 levels in CDK5RAP2-knockdown cells, reducing p53 Ser15 phosphorylation and preventing senescence in these cells. Conversely, inhibition of WIP1 activity increases p53 Ser15 phosphorylation and senescence in CDK5RAP2-depleted cells lacking GSK3β activity. These findings indicate that loss of CDK5RAP2 promotes premature cell senescence through GSK3β/β-catenin downregulation of WIP1. Premature cell senescence may contribute to reduced body size associated with CDK5RAP2 loss-of-function.Subject terms: Senescence, Diseases 相似文献
17.
A detailed analysis is presented of the dynamics of human CDK5 in complexes with the protein activator p25 and the purine-like inhibitor roscovitine. These and other findings related to the activation of CDK5 are critically reviewed from a molecular perspective. In addition, the results obtained on the behavior of CDK5 are compared with data on CDK2 to assess the differences and similarities between the two kinases in terms of (i) roscovitine binding, (ii) regulatory subunit association, (iii) conformational changes in the T-loop following CDK/regulatory subunit complex formation, and (iv) specificity in CDK/regulatory subunit recognition. An energy decomposition analysis, used for these purposes, revealed why the binding of p25 alone is sufficient to stabilize the extended active T-loop conformation of CDK5, whereas the equivalent conformational change in CDK2 requires both the binding of cyclin A and phosphorylation of the Thr(160) residue. The interaction energy of the CDK5 T-loop with p25 is about 26 kcal.mol(-1) greater than that of the CDK2 T-loop with cyclin A. The binding pattern between CDK5 and p25 was compared with that of CDK2/cyclin A to find specific regions involved in CDK/regulatory subunit recognition. The analyses performed revealed that the alphaNT-helix of cyclin A interacts with the alpha6-alpha7 loop and the alpha7 helix of CDK2, but these regions do not interact in the CDK5/p25 complex. Further differences between the CDK5/p25 and CDK2/cyclin A systems studied are discussed with respect to their specific functionality. 相似文献
18.
Kristina A. Blake-Hodek Lynne Cassimeris Tim C. Huffaker 《Molecular biology of the cell》2010,21(12):2013-2023
Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities. 相似文献
19.
Astrid S. Pfister Michel V. Hadjihannas Waldemar R?hrig Alexandra Schambony Jürgen Behrens 《The Journal of biological chemistry》2012,287(42):35333-35340
EB1 is key factor in the organization of the microtubule cytoskeleton by binding to the plus-ends of microtubules and serving as a platform for a number of interacting proteins (termed +TIPs) that control microtubule dynamics. Together with its direct binding partner adenomatous polyposis coli (APC), EB1 can stabilize microtubules. Here, we show that Amer2 (APC membrane recruitment 2), a previously identified membrane-associated APC-binding protein, is a direct interaction partner of EB1 and acts as regulator of microtubule stability together with EB1. Amer2 binds to EB1 via specific (S/T)xIP motifs and recruits it to the plasma membrane. Coexpression of Amer2 and EB1 generates stabilized microtubules at the plasma membrane, whereas knockdown of Amer2 leads to destabilization of microtubules. Knockdown of Amer2, APC, or EB1 reduces cell migration, and morpholino-mediated down-regulation of Xenopus Amer2 blocks convergent extension cell movements, suggesting that the Amer2-EB1-APC complex regulates cell migration by altering microtubule stability. 相似文献
20.
Shimamura T Shibata J Kurihara H Mita T Otsuki S Sagara T Hirai H Iwasawa Y 《Bioorganic & medicinal chemistry letters》2006,16(14):3751-3754
5-Pyrimidinyl-2-aminothiazole 1 was identified as an inhibitor of cyclin-dependent kinases (CDKs) by a screening of the Merck sample repository. The introduction of a methyl group at the C-5 or C-6 position on the pyrimidine ring, directed toward the gate keeper residue of CDK4 (Phe93), led to significant enhancement of selectivity for CDK4 over other CDKs. Compound 3 exhibited more than 300-fold selectivity for CDK4 over CDK1, 2, 5, 7, and 9. Subsequent improvements in aqueous solubility afforded compound 4, which is available for further in vivo studies and this compound inhibited pRb phosphorylation and BrdU incorporation in tumor models. 相似文献