首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang  Pengwei  Tang  Chaojun  Yan  Zhendong  Wang  Qiugu  Liu  Fanxin  Chen  Jing  Xu  Zhijun  Sui  Chenghua 《Plasmonics (Norwell, Mass.)》2016,11(2):515-522
Plasmonics - Recently, graphene plasmons with an excellent tenability by doping or gating have been drawing increasing interest. In this work, we designed graphene-based superlens to achieve...  相似文献   

2.
Real-time visualization of collagen is important in studies on tissue formation and remodeling in the research fields of developmental biology and tissue engineering. Our group has previously reported on a fluorescent probe for the specific imaging of collagen in live tissue in situ, consisting of the native collagen binding protein CNA35 labeled with fluorescent dye Oregon Green 488 (CNA35-OG488). The CNA35-OG488 probe has become widely used for collagen imaging. To allow for the use of CNA35-based probes in a broader range of applications, we here present a toolbox of six genetically-encoded collagen probes which are fusions of CNA35 to fluorescent proteins that span the visible spectrum: mTurquoise2, EGFP, mAmetrine, LSSmOrange, tdTomato and mCherry. While CNA35-OG488 requires a chemical conjugation step for labeling with the fluorescent dye, these protein-based probes can be easily produced in high yields by expression in E. coli and purified in one step using Ni2+-affinity chromatography. The probes all bind specifically to collagen, both in vitro and in porcine pericardial tissue. Some first applications of the probes are shown in multicolor imaging of engineered tissue and two-photon imaging of collagen in human skin. The fully-genetic encoding of the new probes makes them easily accessible to all scientists interested in collagen formation and remodeling.  相似文献   

3.
Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling molecules such as cyclic AMP (cAMP) and Ca2+. Genetically encoded sensors for cGMP have been developed based on fluorescence resonance energy transfer (FRET) between fluorescent proteins. However, to analyze the dynamic relationship among these second messengers, combined use of existing sensors in a single cell is inadequate because of the significant spectral overlaps. A single wavelength indicator is an effective alternative to avoid this problem, but color variants of a single fluorescent protein-based biosensor are limited. In this study, to construct a new color fluorescent sensor, we converted the FRET-based sensor into a single wavelength indicator using a dark FRET acceptor. We developed a blue fluorescent cGMP biosensor, which is spectrally compatible with a FRET-based cAMP sensor using cyan and yellow fluorescent proteins (CFP/YFP). We cotransfected them and loaded a red fluorescent probe for Ca2+ into cells, and accomplished triple-parameter fluorescence imaging of these cyclic nucleotides and Ca2+, confirming the applicability of this combination to individually monitor their dynamics in a single cell. This blue fluorescent sensor and the approach using this FRET pair would be useful for multiparameter fluorescence imaging to understand complex signal transduction networks.  相似文献   

4.
Visualization and quantification of lipid order is an important tool in membrane biophysics and cell biology, but the availability of environmentally sensitive fluorescent membrane probes is limited. Here, we present the characterization of the novel fluorescent dyes PY3304, PY3174 and PY3184, whose fluorescence properties are sensitive to membrane lipid order. In artificial bilayers, the fluorescence emission spectra are red-shifted between the liquid-ordered and liquid-disordered phases. Using ratiometric imaging we demonstrate that the degree of membrane order can be quantitatively determined in artificial liposomes as well as live cells and intact, live zebrafish embryos. Finally, we show that the fluorescence lifetime of the dyes is also dependent on bilayer order. These probes expand the current palate of lipid order-sensing fluorophores affording greater flexibility in the excitation/emission wavelengths and possibly new opportunities in membrane biology.  相似文献   

5.
Intracellular free Ca2+plays an important role in the function of neutrophils and many other cell types. In this report, fluorescent techniques for the measurement of intracellular Ca2+in neutrophils are reviewed. Thus, some commonly used fluorescent indicators are listed, and both theoretical and practical considerations required for their use are detailed. The use of these probes to study intracellular Ca2+in neutrophil populations or in individual cells by imaging techniques, including measurement using confocal microscopy, is described.  相似文献   

6.
The use of green-to-red photoconvertible fluorescent proteins (FPs) enables researchers to highlight a subcellular population of a fusion protein of interest and to image its dynamics in live cells. In an effort to enrich the arsenal of photoconvertible FPs and to overcome the limitations imposed by the oligomeric structure of natural photoconvertible FPs, we designed and optimized a new monomeric photoconvertible FP. Using monomeric versions of Clavularia sp. cyan FP as template, we employed sequence-alignment-guided design to create a chromophore environment analogous to that shared by known photoconvertible FPs. The designed gene was synthesized and, when expressed in Escherichia coli, found to produce green fluorescent colonies that gradually switched to red after exposure to white light. We subjected this first-generation FP [named mClavGR1 (monomeric Clavularia-derived green-to-red photoconvertible 1)] to a combination of random and targeted mutageneses and screened libraries for efficient photoconversion using a custom-built system for illuminating a 10-cm Petri plate with 405-nm light. Following more than 15 rounds of library creation and screening, we settled on an optimized version, known as mClavGR2, that has eight mutations relative to mClavGR1. Key improvements of mClavGR2 relative to mClavGR1 include a 1.4-fold brighter red species, 1.8-fold higher photoconversion contrast, and dramatically improved chromophore maturation in E. coli. The monomeric status of mClavGR2 has been demonstrated by gel-filtration chromatography and the functional expression of a variety of mClavGR2 chimeras in mammalian cells. Furthermore, we have exploited mClavGR2 to determine the diffusion kinetics of the membrane protein intercellular adhesion molecule 1 both when the membrane is in contact with a T-lymphocyte expressing leukocyte-function-associated antigen 1 and when it is not. These experiments clearly establish that mClavGR2 is well suited for rapid photoconversion of protein subpopulations and subsequent tracking of dynamic changes in localization in living cells.  相似文献   

7.
We report on the first, to our knowledge, successful detection of a fluorescent unnatural amino acid (fUAA), Lys(BODIPYFL), incorporated into a membrane protein (the muscle nicotinic acetylcholine receptor, nAChR) in a living cell. Xenopus oocytes were injected with a frameshift-suppressor tRNA, amino-acylated with Lys(BODIPYFL) and nAChR (α/β19′GGGU/γ/δ) mRNAs. We measured fluorescence from oocytes expressing nAChR β19′Lys(BODIPYFL), using time-resolved total internal reflection fluorescence microscopy. Under conditions of relatively low receptor density (<0.1 receptors/μm2), we observed puncta with diffraction-limited profiles that were consistent with the point-spread function of our microscope. Furthermore, diffraction-limited puncta displayed step decreases in fluorescence intensity, consistent with single-molecule photobleaching. The puncta densities agreed with macroscopic ACh-induced current densities, showing that the fUAA was incorporated, and that receptors were functional. Dose-response relations for the nAChR β19′Lys(BODIPYFL) receptors were similar to those for wild-type receptors. We also studied nAChR β19′Lys(BODIPYFL) receptors labeled with α-bungarotoxin monoconjugated with Alexa488 (αBtxAlexa488). The nAChR has two αBtx binding sites, and puncta containing the Lys(BODIPYFL) labeled with αBtxAlexa488 yielded the expected three discrete photobleaching steps. We also performed positive control experiments with a nAChR containing enhanced green fluorescent protein in the γ-subunit M3-M4 loop, which confirmed our nAChR β19′Lys(BODIPYFL) measurements. Thus, we report on the cell-based single-molecule detection of nAChR β19′Lys(BODIPYFL).  相似文献   

8.
To monitor the lateral segregation of lipids into liquid-ordered (Lo) and -disordered (Ld) phases in lipid membranes, environment-sensitive dyes that partition in both phases but stain them differently have been developed. Of particular interest is the dual-color F2N12S probe, which can discriminate the two phases through the ratio of its two emission bands. These bands are associated with the normal (N) and tautomer (T) excited-state species that result from an excited-state intramolecular proton transfer. In this work, we investigated the potency of the time-resolved fluorescence parameters of F2N12S to discriminate lipid phases in model and cell membranes. Both the long and mean lifetime values of the T form of F2N12S were found to differ by twofold between Ld and Lo phases as a result of the restriction in the relative motions of the two aromatic moieties of F2N12S imposed by the highly packed Lo phase. This differed from the changes in the ratio of the two emission bands between the two phases, which mainly resulted from the decreased hydration of the N form in the Lo phase. Importantly, the strong difference in lifetimes between the two phases was preserved when cholesterol was added to the Ld phase. The two phases could be imaged with high contrast by fluorescence lifetime imaging microscopy (FLIM) on giant unilamellar vesicles. FLIM images of F2N12S-labeled live HeLa cells confirmed that the plasma membrane was mainly in the Lo-like phase. Furthermore, the two phases were found to be homogeneously distributed all over the plasma membrane, indicating that they are highly mixed at the spatiotemporal resolution of the FLIM setup. Finally, FLIM could also be used to sensitively monitor the change in lipid phase upon cholesterol depletion and apoptosis.  相似文献   

9.
NO是一种具有重要生物学意义的信息分子,在体内具有广泛的生物学特征。但由于NO的自由基性质,使得在活细胞中对低浓度、低寿命的NO实时监测异常困难。为了进一步了解NO在神经、免疫、血管和消化等多种系统中的生理功能,高度专一性的、高灵敏的荧光探针结合激光扫描共聚焦显微镜对活细胞中的NO进行实时、连续的成像已被广泛研究。该综述了近年来NO荧光探针的发展及其在生物成像中的应用。  相似文献   

10.
11.
Optical imaging (OI) is an easy, fast and inexpensive tool for in vivo monitoring of new stem cell based therapies. The technique is based on ex vivo labeling of stem cells with a fluorescent dye, subsequent intravenous injection of the labeled cells and visualization of their accumulation in specific target organs or pathologies. The presented technique demonstrates how we label human mesenchymal stem cells (hMSC) by simple incubation with the lipophilic fluorescent dye DiD (C67H103CIN2O3S) and how we label human embryonic stem cells (hESC) with the FDA approved fluorescent dye Indocyanine Green (ICG). The uptake mechanism is via adherence and diffusion of the lypophilic dye across the phospholipid cell membrane bilayer. The labeling efficiency is usually improved if the cells are incubated with the dye in serum-free media as opposed to incubation in serum-containing media. Furthermore, the addition of the transfection agent Protamine Sulfate significantly improves contrast agent uptake.Download video file.(45M, mov)  相似文献   

12.
Recent advances in fluorescence microscopy have extended the spatial resolution to the nanometer scale. Here, we report an engineered photoconvertible fluorescent protein (pcFP) variant, designated as mMaple, that is suited for use in multiple conventional and super-resolution imaging modalities, specifically, widefield and confocal microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy. We demonstrate the versatility of mMaple by obtaining super-resolution images of protein organization in Escherichia coli and conventional fluorescence images of mammalian cells. Beneficial features of mMaple include high photostability of the green state when expressed in mammalian cells and high steady state intracellular protein concentration of functional protein when expressed in E. coli. mMaple thus enables both fast live-cell ensemble imaging and high precision single molecule localization for a single pcFP-containing construct.  相似文献   

13.
Understanding of nanoparticle-bio-interactions within living cells requires knowledge about the dynamic behavior of nanomaterials during their cellular uptake, intracellular traffic and mutual reactions with cell organelles. Here, we introduce a protocol of combined kinetic imaging techniques that enables investigation of exemplary fluorochrome-labelled nanoparticles concerning their intracellular fate. By time-lapse confocal microscopy we observe fast, dynamin-dependent uptake of polystyrene and silica nanoparticles via the cell membrane within seconds. Fluorescence recovery after photobleaching (FRAP) experiments reveal fast and complete exchange of the investigated nanoparticles at mitochondria, cytoplasmic vesicles or the nuclear envelope. Nuclear translocation is observed within minutes by free diffusion and active transport. Fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS) indicate diffusion coefficients of polystyrene and silica nanoparticles in the nucleus and the cytoplasm that are consistent with particle motion in living cells based on diffusion. Determination of the apparent hydrodynamic radii by FCS and RICS shows that nanoparticles exert their cytoplasmic and nuclear effects mainly as mobile, monodisperse entities. Thus, a complete toolkit of fluorescence fluctuation microscopy is presented for the investigation of nanomaterial biophysics in subcellular microenvironments that contributes to develop a framework of intracellular nanoparticle delivery routes.  相似文献   

14.
Here we describe a procedure to image subcellular structures in live rodents that is based on the use of confocal intravital microscopy. As a model organ, we use the salivary glands of live mice since they provide several advantages. First, they can be easily exposed to enable access to the optics, and stabilized to facilitate the reduction of the motion artifacts due to heartbeat and respiration. This significantly facilitates imaging and tracking small subcellular structures. Second, most of the cell populations of the salivary glands are accessible from the surface of the organ. This permits the use of confocal microscopy that has a higher spatial resolution than other techniques that have been used for in vivo imaging, such as two-photon microscopy. Finally, salivary glands can be easily manipulated pharmacologically and genetically, thus providing a robust system to investigate biological processes at a molecular level.In this study we focus on a protocol designed to follow the kinetics of the exocytosis of secretory granules in acinar cells and the dynamics of the apical plasma membrane where the secretory granules fuse upon stimulation of the beta-adrenergic receptors. Specifically, we used a transgenic mouse that co-expresses cytosolic GFP and a membrane-targeted peptide fused with the fluorescent protein tandem-Tomato. However, the procedures that we used to stabilize and image the salivary glands can be extended to other mouse models and coupled to other approaches to label in vivo cellular components, enabling the visualization of various subcellular structures, such as endosomes, lysosomes, mitochondria, and the actin cytoskeleton.  相似文献   

15.
Fibroblast activation protein-alpha (FAPα) is a cell surface glycoprotein which is selectively expressed by tumor-associated fibroblasts in malignant tumors but rarely on normal tissues. FAPα has also been reported to promote tumor growth and invasion and therefore has been of increasing interest as a promising target for designing tumor-targeted drugs and imaging agents. Although medicinal study on FAPα inhibitors has led to the discovery of many FAPα-targeting inhibitors including a drug candidate in a phase II clinical trial, the development of imaging probes to monitor the expression and activity of FAPα in vivo has largely lagged behind. Herein, we report an activatable near-infrared (NIR) fluorescent probe (ANP(FAP)) for in vivo optical imaging of FAPα. The ANP(FAP) consists of a NIR dye (Cy5.5) and a quencher dye (QSY21) which are linked together by a short peptide sequence (KGPGPNQC) specific for FAPα cleavage. Because of the efficient fluorescence resonance energy transfer (FRET) between Cy5.5 and QSY21 in ANP(FAP), high contrast on the NIR fluorescence signal can be achieved after the cleavage of the peptide sequence by FAPα both in vitro and in vivo. In vitro assay on ANP(FAP) indicated the specificity of the probe to FAPα. The in vivo optical imaging using ANP(FAP) showed fast tumor uptake as well as high tumor to background contrast on U87MG tumor models with FAPα expression, while much lower signal and tumor contrast were observed in the C6 tumor without FAPα expression, demonstrating the in vivo targeting specificity of the ANP(FAP). Ex vivo imaging also demonstrated ANP(FAP) had high tumor uptake at 4 h post injection. Collectively, these results indicated that ANP(FAP) could serve as a useful NIR optical probe for early detection of FAPα expressing tumors.  相似文献   

16.
Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.  相似文献   

17.
The demand to increase throughput in HTS programs, without a concomitant addition to costs, has grown significantly during the past few years. One approach to handle this demand is assay miniaturization, which can provide greater throughput, as well as significant cost savings through reduced reagent costs. Currently, one of the major challenges facing assay miniaturization is the ability to detect the assay signal accurately and rapidly in miniaturized formats. Digital imaging is a detection method that can measure fluorescent or luminescent signals in these miniaturized formats. In this study, an imaging system capable of detecting the signal from a fluorescent protease assay in multiple plate formats was used to evaluate this detection method in an HTS environment. A direct comparison was made between the results obtained from the imaging system and a fluorescent plate reader by screening 8,800 compounds in a 96-well plate format. The imaging system generated similar changes in relative signal for each well in the screen, identified the same active compounds, and yielded similar IC(50) values as compared to the plate reader. When a standard protease inhibitor was evaluated in 96-, 384-, 864-, and 1536-well plates using imaging detection, similar IC(50) values were obtained. Furthermore, similar dose-response curves were generated for the compound in 96- and 384-well assay plates read in a plate reader. These results provide support for digital imaging as an accurate and rapid detection method for high-density microtiter plates.  相似文献   

18.
SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells.Download video file.(47M, mov)  相似文献   

19.
20.
Fluorescent proteins (FPs) were developed for live-cell imaging and have revolutionized cell biology. However, not all plant tissues are accessible to live imaging using confocal microscopy, necessitating alternative approaches for protein localization. An example is the phloem, a tissue embedded deep within plant organs and sensitive to damage. To facilitate accurate localization of FPs within recalcitrant tissues, we developed a simple method for retaining FPs after resin embedding. This method is based on low-temperature fixation and dehydration, followed by embedding in London Resin White, and avoids the need for cryosections. We show that a palette of FPs can be localized in plant tissues while retaining good structural cell preservation, and that the polymerized block face can be counterstained with cell wall probes. Using this method we have been able to image green fluorescent protein-labeled plasmodesmata to a depth of more than 40 μm beneath the resin surface. Using correlative light and electron microscopy of the phloem, we were able to locate the same FP-labeled sieve elements in semithin and ultrathin sections. Sections were amenable to antibody labeling, and allowed a combination of confocal and superresolution imaging (three-dimensional-structured illumination microscopy) on the same cells. These correlative imaging methods should find several uses in plant cell biology.The localization of fluorescent proteins (FPs) in cells and tissues has become one of the major tools in cell biology (Tsien, 1998; Shaner et al., 2005). Advances in confocal microscopy have meant that many proteins can be tagged with appropriate fluorescent markers and tracked as they move within and between cells (Chapman et al., 2005). Additional approaches involving photobleaching and photoactivation of FPs have opened up new avenues for exploring protein dynamics and turnover within cells (Lippincott-Schwartz et al., 2003). However, not all cells are amenable to live-cell imaging, which in plants is usually restricted to surface cells such as the leaf epidermis. An example is the phloem. The delicate nature of sieve elements and companion cells, which are under substantial hydrostatic pressure, has made studies of the fine structure of these cells particularly difficult (Knoblauch and van Bel, 1998). Despite this, significant advances have been made in imaging the phloem through inventive use of imaging protocols that allow living sieve elements to be observed as they translocate assimilates (for review, see Knoblauch and Oparka, 2012). However, determining the precise localization of the plethora of proteins located within the sieve element (SE)-companion cell (CC) complex remains a technical challenge. The phloem is the conduit for long-distance movement of macromolecules in plants, including viral genomes. For several viruses, the entry into the SE-CC complex is a crucial step that determines the capacity for long-distance movement. Identifying the cell types within the phloem that restrict the movement of some viruses is technically challenging due to the small size of phloem cells and their location deep within plant organs (Nelson and van Bel, 1998).The problems associated with imaging proteins in phloem tissues prompted us to explore methods for retaining the fluorescence of tagged proteins within tissues not normally amenable to confocal imaging. Previously, we used superresolution imaging techniques on fixed phloem tissues sectioned on a Vibroslice, providing information on the association between a viral movement protein (MP) and plasmodesmata (PD) within the SE-CC complex (Fitzgibbon et al., 2010). However, we wished to explore the same cells using correlative light and electron microscopy (CLEM), necessitating the development of methods that would allow sequential imaging of cells using fluorescence microscopy and transmission electron microscopy (TEM). To this end, we developed a protocol that retains fluorescent proteins through aldehyde fixation and resin embedding.In the last 10 years there has been significant interest in imaging fluorescent proteins in semithin sections (for review, see Cortese et al., 2009). Luby-Phelps and colleagues (2003) first described a method for retaining GFP fluorescence after fixation and resin embedding, but their method has not seen widespread application. The advent of superresolution imaging techniques (for review, see Bell and Oparka, 2011) has stimulated considerable interest in this field as the retention of fluorescence in thin sections means that cells can be imaged using techniques such as photoactivation light microscopy and stochastic optical reconstruction microscopy, allowing a lateral resolution of less than 10 nm to be achieved (Subach et al., 2009; Xu et al., 2012). A number of studies have described CLEM on the same cells (Luby-Phelps et al., 2003; Betzig et al., 2006; Watanabe et al., 2011). Advances in this field were reviewed recently (Jahn et al., 2012; see contributions in Muller-Reichert and Verkade, 2012). For example, Pfeiffer et al. (2003) were able to image SEs and CCs using high-pressure freezing, followed by freeze substitution in acetone and resin embedding. They then used thick optical sections of the tissue to locate cells of interest, and these were subsequently imaged using TEM. However, there have been few attempts to retain FPs in resin-embedded plant tissues. Thompson and Wolniak (2008) described the retention of mCitrine fused to an SE-plasma membrane protein in glycol methacrylate sections. The fluorescent signal was stable using wide-field microscopy but bleached rapidly under the confocal microscope.To date, cryosections have been the preferred choice for CLEM in mammalian tissues (Watanabe et al., 2011). Recently, Lee et al. (2011) chemically fixed Arabidopsis (Arabidopsis thaliana) seedlings, cut 50-μm sections, and examined these with a confocal microscope. After confocal mapping the sections were embedded in resin and thin sectioned. These authors were able to locate the same PD pit fields using confocal and TEM, providing important information on the localization of a novel PD protein. As general rule, cryosectioning is a time-consuming process, and subcellular details may be obscured in cryosections because of poor tissue contrast (Watanabe et al., 2011). A major problem with imaging FPs in resin sections has been that GFP and its derivatives are quenched by the acidic, oxidizing conditions required for fixation, dehydration, and embedding of delicate specimens (Tsien, 1998; Keene et al., 2008). Recently, however, Watanabe et al. (2011) explored the retention of FPs in Caenorhabditis elegans cells after fixation by different aldehydes and embedding media. These authors tested a range of resins and found that Citrine and tandem dimer Eos (tdEos) could be retained in methacrylate plastic sections. This material was difficult to cut thinly (<70 nm) compared to epoxy-based resins, but the authors obtained valuable correlative images using stimulated emission depletion microscopy and photoactivation light microscopy followed by low-voltage scanning electron microscopy.Because the retention of fluorescent proteins may differ between plant and animal cells, we explored a number of approaches for retaining fluorescent proteins in resin. Using low-temperature conditions (<8°C) during fixation and dehydration, we could retain strong fluorescence prior to tissue embedding. We also explored different embedding media and found that tissue could be effectively polymerized in London Resin (LR) White while retaining sufficient fluorescence for confocal imaging. Using water-dipping lenses, we were able to detect fluorescent proteins in optical sections up to 40 μm below the surface of the block face. Ultrathin sections from the same blocks showed good structural preservation and allowed CLEM. Subsequently, we cut 1- to 2-μm sections and examined these using confocal microscopy and three-dimensional-structured illumination microscopy (3D-SIM). Sections could be counterstained with a number of conventional fluorophores and antibodies, allowing colocalization studies. These simple methods allow successive imaging of FPs with the light and electron microscope, combining the strengths of both imaging platforms. We believe this approach will have significant utility for tissues that are recalcitrant to conventional confocal imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号