首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study on the negative and positive effect of surface roughness and loss coefficient on subwavelength imaging of the superlens structure. It has been found that even though surface roughness enables more transmission of high spatial frequency components, the random interferential noise between neighborhood images becomes more severe with increasing distortion. We show that additional loss is able to restrain the interferential noise caused by random roughness while preserving the imaging integrity. The results with practical parameters prove that the mean contrast and uniformity are improved by adding adequate loss on rough surface. Moreover, other two situations are further studied: (a) a single superlens with roughness on different interfaces and (b) a multilayered alternated metal–dielectric superlens with roughness on each surface. We found that the roughness on the imaging surface (metal–photoresist interface) plays a major role in determining the superlens imaging. The multilayer superlens is able to enhance the subwavelength imaging with fractionalized thinner films. But with the further fractionizing layers, the multilayer becomes more vulnerable to the roughness due to the multiple mixing and distorting. We still prove that additional loss is able to improve the performance in both situations.  相似文献   

2.
Fluorescent proteins that can be reversibly photoswitched between a fluorescent and a nonfluorescent state are important for innovative microscopy schemes, such as protein tracking, fluorescence resonance energy transfer imaging, sub-diffraction resolution microscopy and others. However, all available monomeric reversibly switchable fluorescent proteins (RSFPs) have similar properties and switching characteristics, thereby limiting their use. Here, we introduce two bright green fluorescent RSFPs, bsDronpa and Padron, generated by extensive mutagenesis of the RSFP Dronpa, with unique absorption and switching characteristics. Whereas bsDronpa features a broad absorption spectrum extending into the UV, Padron displays a switching behavior that is reversed to that of all green fluorescent RSFPs known to date. These two RSFPs enable live-cell fluorescence microscopy with multiple labels using a single detection color, because they can be distinguished by photoswitching. Furthermore, we demonstrate dual-color fluorescence microscopy with sub-diffraction resolution using bsDronpa and Dronpa whose emission maxima are separated by <20 nm.  相似文献   

3.
4.
Burghardt TP 《PloS one》2011,6(2):e16772

Background

Photoactivatable fluorescent probes developed specifically for single molecule detection extend advantages of single molecule imaging to high probe density regions of cells and tissues. They perform in the native biomolecule environment and have been used to detect both probe position and orientation.

Methods and Findings

Fluorescence emission from a single photoactivated probe captured in an oil immersion, high numerical aperture objective, produces a spatial pattern on the detector that is a linear combination of 6 independent and distinct spatial basis patterns with weighting coefficients specifying emission dipole orientation. Basis patterns are tabulated for single photoactivated probes labeling myosin cross-bridges in a permeabilized muscle fiber undergoing total internal reflection illumination. Emitter proximity to the glass/aqueous interface at the coverslip implies the dipole near-field and dipole power normalization are significant affecters of the basis patterns. Other characteristics of the basis patterns are contributed by field polarization rotation with transmission through the microscope optics and refraction by the filter set. Pattern recognition utilized the generalized linear model, maximum likelihood fitting, for Poisson distributed uncertainties. This fitting method is more appropriate for treating low signal level photon counting data than χ2 minimization.

Conclusions

Results indicate that emission dipole orientation is measurable from the intensity image except for the ambiguity under dipole inversion. The advantage over an alternative method comparing two measured polarized emission intensities using an analyzing polarizer is that information in the intensity spatial distribution provides more constraints on fitted parameters and a single image provides all the information needed. Axial distance dependence in the emission pattern is also exploited to measure relative probe position near focus. Single molecule images from axial scanning fitted simultaneously boost orientation and axial resolution in simulation.  相似文献   

5.
Temperature-dependent van der Waals forces   总被引:3,自引:2,他引:1       下载免费PDF全文
Biological systems can experience a strong van der Waals interaction involving electromagnetic fluctuations at the low frequency limit. In lipid-water mixtures the free energy of this interaction is proportional to temperature, primarily involves an entropy change, and has qualitative features of a “hydrophobic bond.” Protein-protein attraction in dilute solution is due as much to low frequency proton fluctuation (Kirkwood-Shumaker forces) and permanent dipole forces as to high frequency (infrared and UV) van der Waals intreactions. These conclusions are described in terms of numerical calculations via the Lifshitz theory of van der Waals forces.  相似文献   

6.

Objective

To design and synthesize a novel near-infrared (NIR) fluorescent probe based on indocyanine Green (ICG), that can be applied in imaging living cells.

Results

A highly fluorescent novel NIR fluorescent probe (IR-793) was synthesized in two steps. IR-793 had better fluorescence and optical stability than ICG. In addition, no obvious cytotoxicity effect of IR-793 was observed and cell viability was above 75% at the maximum concentration (120 nM). IR-793 also exhibited good performance in imaging living A549 cells.

Conclusion

IR-793, a novel NIR fluorescent probe that is stable, low-cost, highly fluorescent and low cytotoxicity, has been designed and synthesized for imaging living cells.
  相似文献   

7.
The Fröhlich coherent polar vibrations may be a source of the cell-generated electromagnetic field. The cellular membrane is assumed to be the locus of the dipole vibrations. We adopt a model of the spherical dipole layer with both uniform and domain distributions of the dipole densities and of the dipole moments. Computer results indicate that the electromagnetic field of cellular origin may be significant within a distance of about 1–10 m from the cell surface. The Schottky barrier might be used to determine the frequency and the intensity of the cell-generated field in the frequency range below 1 THz.  相似文献   

8.
A new method for high-resolution imaging, near-field scanning optical microscopy (NSOM), has been developed. The concepts governing this method are discussed, and the technical challenges encountered in constructing a working NSOM instrument are described. Two distinct methods are presented for the fabrication of well-characterized, highly reproducible, subwavelength apertures. A sample one-dimensional scan is provided and compared to the scanning electron micrograph of a test pattern. From this comparison, a resolution of > 1,500 Å (i.e., λ/3.6) is determined, which represents a significant step towards our eventual goal of 500 Å resolution. Fluorescence has been observed through apertures smaller than 600 Å and signal-to-noise calculations show that fluorescent imaging should be feasible. The application of such imaging is then discussed in reference to specific biological problems. The NSOM method employs nonionizing visible radiation and can be used in air or aqueous environments for nondestructive visualization of functioning biological systems with a resolution comparable to that of scanning electron microscopy.  相似文献   

9.

Background

Biomimetic membrane models tethered on solid supports are important tools for membrane protein biochemistry and biotechnology. The supported membrane systems described up to now are composed of a lipid bilayer tethered or not to a surface separating two compartments: a ”trans” side, one to a few nanometer thick, located between the supporting surface and the membrane; and a “cis” side, above the synthetic membrane, exposed to the bulk medium. We describe here a novel biomimetic design composed of a tethered bilayer membrane that is assembled over a surface derivatized with a specific intracellular protein marker. This multilayered biomimetic assembly exhibits the fundamental characteristics of an authentic biological membrane in creating a continuous yet fluid phospholipidic barrier between two distinct compartments: a “cis” side corresponding to the extracellular milieu and a “trans” side marked by a key cytosolic signaling protein, calmodulin.

Methodology/Principal Findings

We established and validated the experimental conditions to construct a multilayered structure consisting in a planar tethered bilayer assembled over a surface derivatized with calmodulin. We demonstrated the following: (i) the grafted calmodulin molecules (in trans side) were fully functional in binding and activating a calmodulin-dependent enzyme, the adenylate cyclase from Bordetella pertussis; and (ii) the assembled bilayer formed a continuous, protein-impermeable boundary that fully separated the underlying calmodulin (trans side) from the above medium (cis side).

Conclusions

The simplicity and robustness of the tethered bilayer structure described here should facilitate the elaboration of biomimetic membrane models incorporating membrane embedded proteins and key cytoplasmic constituents. Such biomimetic structures will also be an attractive tool to study translocation across biological membranes of proteins or other macromolecules.  相似文献   

10.
Deep tissue imaging in the multiple scattering regime remains at the frontier of fluorescence microscopy. Speckle correlation imaging (SCI) can computationally uncover objects hidden behind a scattering layer, but has only been demonstrated with scattered laser illumination and in geometries where the scatterer is in the far field of the target object. Here, SCI is extended to imaging a planar fluorescent signal at the back surface of a 500‐μm‐thick slice of mouse brain. The object is reconstructed from a single snapshot through phase retrieval using a proximal algorithm that easily incorporates image priors. Simulations and experiments demonstrate improved image recovery with this approach compared to the conventional SCI algorithm.   相似文献   

11.
To experimentally demonstrate the subwavelength focusing of depth-tuned or non-depth-tuned plasmonic lenses, we first designed this type of lens using diffraction-coupling-angle based method, then fabricated the structure in gold thin film with focused ion beam, and finally characterized its focusing behavior using near-field scanning optical microscope. It is found that this type of lens has a resolution limit on the focal plane due to the field represented by angular spectrum having a cut-off frequency, while at the near field the lens has sub-diffraction limit focusing capability due to the existence of high-angular-frequency components in the field.  相似文献   

12.
A new design for the multilayer superlens, with the sub-wavelength imaging ability for various 2D objects in the visible range, is introduced and analyzed. The designed superlens will be more versatile for practical applications. A rigorous and efficient approach based on the method of moments is used to study the imaging performance of this structure. The imaging performance of the proposed superlens is evaluated using the correlation coefficient. In this work, the closed-form dyadic Green’s functions in spatial domain, needed for the method of moments solutions, are obtained by applying the complex image method. Besides, the numerical integration is exploited to verify this method. The imaging results obtained via our approach are examined by comparison with the finite element method simulations that reveal good efficiency and accuracy of the proposed method.  相似文献   

13.
Bacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more “temperate swarmers” that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. “Wettability”, or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment.  相似文献   

14.
A super lens system is proposed to achieve subdiffraction limit demagnification imaging. The super lens system consists of a hyperlens with planar input and output surfaces, a metal superlens, and a plasmonic reflector. By employing the hyperlens to transform evanescent waves into propagating waves and employing the metal superlens and the plasmonic reflector to amplify evanescent waves, the super lens system can produce a subdiffraction limit image with relatively high electric field intensity. The reduction factor of the super lens system depends on the geometric parameters of the hyperlens. Simulation results show that an image with a half-pitch resolution of about one tenth the operating wavelength and a reduction factor of about 2.2 can be produced by the super lens system. The proposed super lens system has potential applications in nanolithography.  相似文献   

15.

Background

Treatment of prostate cancer using endocavitary High Intensity Focused Ultrasound (HIFU) has become more commonplace since the first treatments in the 1990s. The gold standard HIFU strategy to treat prostate cancer is the complete thermal ablation of the entire prostate gland under real-time ultrasound (US) image guidance. A more desirable treatment and the current trend, however, is towards a focal treatment but more accurate and finely tunable thermal lesions are needed along with improved US imaging guidance. In this study, Capacitive Micromachined Ultrasound Transducer (CMUT) technology is being investigated, as they have shown recent promise for US imaging and potential to be used for HIFU therapy. They offer potential advantages over current piezoelectric designs in the context of ultrasound-guided HIFU (USgHIFU) focal therapies.

Objective

The presented study evaluates the ability of a planar annular array CMUT design to achieve HIFU dynamic focusing and feasibility of generating thermal lesions in biological tissues.

Method

The proposed CMUT design consists of a 64-element annular array for HIFU delivery with a space in the center that accommodates a high-resolution 256-element linear imaging array. The pressure field simulations of the HIFU portion of the array were performed using the Rayleigh integral method. The bioheat transfer equation was then used to predict lesion formation. The HIFU performances of the proposed CMUT phased-array design were compared to those of the device currently used in the clinic. Partial CMUT prototypes, including the therapeutic part only, were fabricated and experimentally characterized (electromechanical CMUT behavior, ultrasound pressure field distribution and acoustic intensity).

Results

The planar 64-element annular CMUT design is capable of dynamically focusing a 3 MHz ultrasound beam at distances ranging from 32 to 72 mm, comparable in size and shape to the ones obtained with the clinical device. The simulated ultrasound fields correlated well to experimental measurements. Visual observation and impedance measurements of the CMUT cells allowed direct estimation of the collapse and snapback voltages of the ring-elements. The surface acoustic intensity of the CMUT ring-elements with both AC driving and DC bias voltages can achieve over 6 W/cm2, shown in simulation to be compatible with the generation of thermal lesions. The electro-acoustic efficiency of the CMUT elements increased with increasing DC bias voltages to reach 31%, and remained stable with increasing AC driving voltages. The ultrasound energy could be dynamically focused from this planar CMUT array during several dozen of minutes.

Conclusion

This work demonstrates the feasibility of utilizing a planar CMUT probe for generating dynamic HIFU focusing and lesioning compatible with the ablation of prostate tissues under endocavitary treatment approach. Future investigations will consist of validating the lesioning capability experimentally both in vitro and in vivo.  相似文献   

16.

Background

Mesenchymal progenitor cells (MPCs) have been isolated from a variety of connective tissues, and are commonly called “mesenchymal stem cells” (MSCs). A stem cell is defined as having robust clonal self-renewal and multilineage differentiation potential. Accordingly, the term “MSC” has been criticised, as there is little data demonstrating self-renewal of definitive single-cell-derived (SCD) clonal populations from a mesenchymal cell source.

Methodology/Principal Findings

Here we show that a tractable MPC population, human umbilical cord perivascular cells (HUCPVCs), was capable of multilineage differentiation in vitro and, more importantly, contributed to rapid connective tissue healing in vivo by producing bone, cartilage and fibrous stroma. Furthermore, HUCPVCs exhibit a high clonogenic frequency, allowing us to isolate definitive SCD parent and daughter clones from mixed gender suspensions as determined by Y-chromosome fluorescent in situ hybridization.

Conclusions/Significance

Analysis of the multilineage differentiation capacity of SCD parent clones and daughter clones enabled us to formulate a new hierarchical schema for MSC self-renewal and differentiation in which a self-renewing multipotent MSC gives rise to more restricted self-renewing progenitors that gradually lose differentiation potential until a state of complete restriction to the fibroblast is reached.  相似文献   

17.

Background

Statistical simulations have consistently demonstrated that new dose-escalation designs such as accelerated titration design (ATD) and continual reassessment method (CRM)-type designs outperform the standard “3+3” design in phase I cancer clinical trials.

Methods

We evaluated the actual efficiency of different dose escalation methods employed in first-in-human phase I clinical trials of targeted agents administered as single agents published over the last decade.

Results

Forty-nine per cent of the 84 retrieved trials used the standard “3+3” design. Newer designs used included ATD in 42%, modified CRM [mCRM] in 7%, and pharmacologically guided dose escalation in 1%. The median numbers of dose levels explored in trials using “3+3”, ATD and mCRM designs were 6, 8 and 10, respectively. More strikingly, the mean MTD to starting dose ratio appeared to be at least twice as high for trials using mCRM or ATD designs as for trials using a standard “3+3” design. Despite this, the mean number of patients exposed to a dose below the MTD was similar in trials using “3+3”, ATD and mCRM designs.

Conclusion

Our results support a more extensive implementation of innovative dose escalation designs such as mCRM and ATD in phase I cancer clinical trials of molecularly targeted agents.  相似文献   

18.

Background  

Non-invasive planar fluorescence reflectance imaging (FRI) is used for accessing physiological and molecular processes in biological tissue. This method is efficiently used to detect superficial fluorescent inclusions. FRI is based on recording the spatial radiance distribution (SRD) at the surface of a sample. SRD provides information for measuring structural parameters of a fluorescent source (such as radius and depth). The aim of this article is to estimate the depth and radius of the source distribution from SRD, measured at the sample surface. For this reason, a theoretical expression for the SRD at the surface of a turbid sample arising from a spherical light source embedded in the sample, was derived using a steady-state solution of the diffusion equation with an appropriate boundary condition.  相似文献   

19.
Recently, a disulfide-based cyclic RGD peptide called iRGD, that is, c(CRGDKGPDC), has been reported to interact with both integrin and neuropilin-1 receptors for cellular and deep tissue penetration to improve the imaging sensitivity and therapeutic efficacy. In this study, two new near-infrared fluorescent iRGD conjugates, that is, Ac-Cys(IRDye®800CW)-iRGD (1), and its dual labeling analog DOTA-Cys(IRDye®800CW)-iRGD (2) were synthesized via the specific mercapto-maleimide reaction for tumor imaging. Both 1 and 2 showed significant tumor localization in optical imaging of MDA-MB-435 tumor-bearing mice. The potential of such iRGD compounds in tumor-targeted imaging and drug delivery deserves further exploration.  相似文献   

20.

Introduction

The purpose of this paper is to develop an easy method to generate both fat signal and banding artifact free 3D balanced Steady State Free Precession (bSSFP) images at high magnetic field.

Methods

In order to suppress fat signal and bSSFP banding artifacts, two or four images were acquired with the excitation frequency of the water-selective binomial radiofrequency pulse set On Resonance or shifted by a maximum of 3/4TR. Mice and human volunteers were imaged at 7T and 3T, respectively to perform whole-body and musculoskeletal imaging. “Sum-Of-Square” reconstruction was performed and combined or not with parallel imaging.

Results

The frequency selectivity of 1-2-3-2-1 or 1-3-3-1 binomial pulses was preserved after (3/4TR) frequency shifting. Consequently, whole body small animal 3D imaging was performed at 7T and enabled visualization of small structures within adipose tissue like lymph nodes. In parallel, this method allowed 3D musculoskeletal imaging in humans with high spatial resolution at 3T. The combination with parallel imaging allowed the acquisition of knee images with ~500μm resolution images in less than 2min. In addition, ankles, full head coverage and legs of volunteers were imaged, demonstrating the possible application of the method also for large FOV.

Conclusion

In conclusion, this robust method can be applied in small animals and humans at high magnetic fields. The high SNR and tissue contrast obtained in short acquisition times allows to prescribe bSSFP sequence for several preclinical and clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号