首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Programmed cell death (PCD) is a crucial process for plant innate immunity and development. In plant innate immunity, PCD is believed to prevent the spread of pathogens from the infection site. Although proper control of PCD is important for plant fitness, we have limited understanding of the molecular mechanisms regulating plant PCD. Plant innate immunity triggered by recognition of effectors (effector-triggered immunity, ETI) is often associated with PCD. However pattern-triggered immunity (PTI), which is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs), is not. Therefore we hypothesized that PTI might suppress PCD. Here we report that PCD triggered by the mycotoxin fumonisin B1 (FB1) can be suppressed by PTI in Arabidopsis. FB1-triggered cell death was suppressed by treatment with the MAMPs flg22 (a part of bacterial flagellin) or elf18 (a part of the bacterial elongation factor EF-Tu) but not chitin (a component of fungal cell walls). Although plant hormone signaling is associated with PCD and PTI, both FB1-triggered cell death and suppression of cell death by flg22 treatment were still observed in mutants deficient in jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) signaling. The MAP kinases MPK3 and MPK6 are transiently activated and inactivated within one hour during PTI. We found that FB1 activated MPK3 and MPK6 about 36–48 hours after treatment. Interestingly, this late activation was attenuated by flg22 treatment. These results suggest that PTI suppression of FB1-triggered cell death may involve suppression of MPK3/MPK6 signaling but does not require JA/ET/SA signaling.  相似文献   

2.
Network robustness is a crucial property of the plant immune signaling network because pathogens are under a strong selection pressure to perturb plant network components to dampen plant immune responses. Nevertheless, modulation of network robustness is an area of network biology that has rarely been explored. While two modes of plant immunity, Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), extensively share signaling machinery, the network output is much more robust against perturbations during ETI than PTI, suggesting modulation of network robustness. Here, we report a molecular mechanism underlying the modulation of the network robustness in Arabidopsis thaliana. The salicylic acid (SA) signaling sector regulates a major portion of the plant immune response and is important in immunity against biotrophic and hemibiotrophic pathogens. In Arabidopsis, SA signaling was required for the proper regulation of the vast majority of SA-responsive genes during PTI. However, during ETI, regulation of most SA-responsive genes, including the canonical SA marker gene PR1, could be controlled by SA-independent mechanisms as well as by SA. The activation of the two immune-related MAPKs, MPK3 and MPK6, persisted for several hours during ETI but less than one hour during PTI. Sustained MAPK activation was sufficient to confer SA-independent regulation of most SA-responsive genes. Furthermore, the MPK3 and SA signaling sectors were compensatory to each other for inhibition of bacterial growth as well as for PR1 expression during ETI. These results indicate that the duration of the MAPK activation is a critical determinant for modulation of robustness of the immune signaling network. Our findings with the plant immune signaling network imply that the robustness level of a biological network can be modulated by the activities of network components.  相似文献   

3.
Since signaling machineries for two modes of plant‐induced immunity, pattern‐triggered immunity (PTI) and effector‐triggered immunity (ETI), extensively overlap, PTI and ETI signaling likely interact. In an Arabidopsis quadruple mutant, in which four major sectors of the signaling network, jasmonate, ethylene, PAD4, and salicylate, are disabled, the hypersensitive response (HR) typical of ETI is abolished when the Pseudomonas syringae effector AvrRpt2 is bacterially delivered but is intact when AvrRpt2 is directly expressed in planta. These observations led us to discovery of a network‐buffered signaling mechanism that mediates HR signaling and is strongly inhibited by PTI signaling. We named this mechanism the ETI‐Mediating and PTI‐Inhibited Sector (EMPIS). The signaling kinetics of EMPIS explain apparently different plant genetic requirements for ETI triggered by different effectors without postulating different signaling machineries. The properties of EMPIS suggest that information about efficacy of the early immune response is fed back to the immune signaling network, modulating its activity and limiting the fitness cost of unnecessary immune responses.  相似文献   

4.
Laluk K  Luo H  Chai M  Dhawan R  Lai Z  Mengiste T 《The Plant cell》2011,23(8):2831-2849
Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) regulates immune responses to a distinct class of pathogens. Here, mechanisms underlying BIK1 function and its interactions with other immune response regulators were determined. We describe BIK1 function as a component of ethylene (ET) signaling and PAMP-triggered immunity (PTI) to fungal pathogens. BIK1 in vivo kinase activity increases in response to flagellin peptide (flg22) and the ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC) but is blocked by inhibition of ET perception. BIK1 induction by flg22, ACC, and pathogens is strictly dependent on EIN3, and the bik1 mutation results in altered expression of ET-regulated genes. BIK1 site-directed mutants were used to determine residues essential for phosphorylation and biological functions in planta, including PTI, ET signaling, and plant growth. Genetic analysis revealed flg22-induced PTI to Botrytis cinerea requires BIK1, EIN2, and HUB1 but not genes involved in salicylate (SA) functions. BIK1-mediated PTI to Pseudomonas syringae is modulated by SA, ET, and jasmonate signaling. The coi1 mutation suppressed several bik1 phenotypes, suggesting that COI1 may act as a repressor of BIK1 function. Thus, common and distinct mechanisms underlying BIK1 function in mediating responses to distinct pathogens are uncovered. In sum, the critical role of BIK1 in plant immune responses hinges upon phosphorylation, its function in ET signaling, and complex interactions with other immune response regulators.  相似文献   

5.
Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions and suppress host immunity with effectors, causing effector-triggered susceptibility (ETS). The differences among PTI, ETS, and ETI have not been completely understood. Toward a better understanding of PTI, ETS, and ETI, we systematically examined various defense-related phenotypes of Arabidopsis infected with different Pseudomonas syringae pv. maculicola ES4326 strains, using the virulence strain DG3 to induce ETS, the avirulence strain DG34 that expresses avrRpm1 (recognized by the resistance protein RPM1) to induce ETI, and HrcC- that lacks the type three secretion system to activate PTI. We found that plants infected with different strains displayed dynamic differences in the accumulation of the defense signaling molecule salicylic acid, expression of the defense marker gene PR1, cell death formation, and accumulation/localization of the reactive oxygen species, H2O2. The differences between PTI, ETS, and ETI are dependent on the doses of the strains used. These data support the quantitative nature of PTI, ETS, and ETI and they also reveal qualitative differences between PTI, ETS, and ETI. Interestingly, we observed the induction of large cells in the infected leaves, most obviously with HrcC- at later infection stages. The enlarged cells have increased DNA content, suggesting a possible activation of endoreplication. Consistent with strong induction of abnormal cell growth by HrcC-, we found that the PTI elicitor flg22 also activates abnormal cell growth, depending on a functional flg22-receptor FLS2. Thus, our study has revealed a comprehensive picture of dynamic changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms.  相似文献   

6.
There are two major modes for plant recognition of biotrophic microbial pathogens. In one mode, plant pattern recognition receptors (PRRs) recognize microbe associated molecular patterns (MAMPs, also called PAMPs), which are molecules such as flg22, a fragment of bacterial flagellin. In the other mode, the products of plant resistance (R) genes recognize pathogen effectors or host proteins modified by effectors. Salicylic acid (SA) -mediated defense responses are an important part of R gene-mediated resistance. It was not clear how these two signaling mechanisms interact with each other. Recently, we reported that treatment with flg22 triggered SA accumulation in Arabidopsis leaves. Disruptions of SA signaling components strongly affected MAMP-triggered gene expression responses. Flg22-triggered resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was partly dependent on SA signaling. Our results demonstrated the importance of SA signaling in flg22-triggered resistance and, at the same time, the importance of some other signaling mechanism(s) in this resistance. Here we discuss potential signaling components of flg22-triggered SA accumulation and other signaling mechanisms potentially contributing to flg22-triggered resistance to Pst DC3000.Key words: arabidopsis, expression profiling, MAMP, PAD4, PAMP, salicylic acid (SA), SID2  相似文献   

7.
Vesicular trafficking has emerged as an important means by which eukaryotes modulate responses to microbial pathogens, likely by contributing to the correct localization and levels of host components necessary for effective immunity. However, considering the complexity of membrane trafficking in plants, relatively few vesicular trafficking components with functions in plant immunity are known. Here we demonstrate that Arabidopsis thaliana Dynamin-Related Protein 2B (DRP2B), which has been previously implicated in constitutive clathrin-mediated endocytosis (CME), functions in responses to flg22 (the active peptide derivative of bacterial flagellin) and immunity against flagellated bacteria Pseudomonas syringae pv. tomato (Pto) DC3000. Consistent with a role of DRP2B in Pattern-Triggered Immunity (PTI), drp2b null mutant plants also showed increased susceptibility to Pto DC3000 hrcC , which lacks a functional Type 3 Secretion System, thus is unable to deliver effectors into host cells to suppress PTI. Importantly, analysis of drp2b mutant plants revealed three distinct branches of the flg22-signaling network that differed in their requirement for RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD), the NADPH oxidase responsible for flg22-induced apoplastic reactive oxygen species production. Furthermore, in drp2b, normal MAPK signaling and increased immune responses via the RbohD/Ca2+-branch were not sufficient for promoting robust PR1 mRNA expression nor immunity against Pto DC3000 and Pto DC3000 hrcC. Based on live-cell imaging studies, flg22-elicited internalization of the plant flagellin-receptor, FLAGELLIN SENSING 2 (FLS2), was found to be partially dependent on DRP2B, but not the closely related protein DRP2A, thus providing genetic evidence for a component, implicated in CME, in ligand-induced endocytosis of FLS2. Reduced trafficking of FLS2 in response to flg22 may contribute in part to the non-canonical combination of immune signaling defects observed in drp2b. In conclusion, this study adds DRP2B to the relatively short list of known vesicular trafficking proteins with roles in flg22-signaling and PTI in plants.  相似文献   

8.
9.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

10.
11.
Boosted responsiveness of plant cells to stress at the onset of pathogen‐ or chemically induced resistance is called priming. The chemical β‐aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft‐rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene‐responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up‐regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA‐defective mutants demonstrated a wild‐type level of BABA‐induced resistance against Pcc. BABA primed the expression of the pattern‐triggered immunity (PTI)‐responsive genes FLG22‐INDUCED RECEPTOR‐LIKE KINASE 1 (FRK1), ARABIDOPSIS NON‐RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN‐INDUCED GENE (HIN1)‐LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe‐associated molecular patterns, such as flg22 or elf26. PTI‐mediated callose deposition was also potentiated in BABA‐treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA‐defective mutants SA induction deficient 2‐1 (sid2‐1) and phytoalexin deficient 4‐1 (pad4‐1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA‐induced resistance.  相似文献   

12.
13.

Introduction

The rhizobacterial tomato pathogen Pseudomonas syringae pv. tomato str. DC3000 (PstDC3000), like many plant pathogenic bacteria, can elicit hypersensitive response in non-host plant cells. PstDC3000 uses a type III protein secretion system (T3SS) to deliver effector proteins.

Objectives

We compared metabolomic responses of Arabidopsis suspension cells to a wild-type PstDC3000, a T3SS deletion mutant PstDC3000D28E, and a pathogen associated molecular pattern (PAMP) flagellin’s N-terminal domain’s 22-aa peptide (flg22) to obtain metabolomics insights into the plant cell PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI).

Methods

Using targeted HPLC-MRM-MS and untargeted GC-MS approaches, we monitored qualitative and quantitative changes of 312 metabolites in central and specialized metabolic pathways in a time-course study.

Results

The overall metabolomic changes induced by the three treatments included phenylpropanoid, flavonoid, and phytohormone biosynthetic pathways, as well as primary metabolism in amino acid and sugar biosynthesis. In addition to shared metabolites, flg22, PstDC3000D28E and PstDC3000 each caused unique metabolite changes in the course of the development of PTI and ETI.

Conclusion

PstDC3000D28E triggered PTI responses were different from those of flg22. This study has not only revealed the discernible metabolomics features associated with the flg22, PstDC3000D28E and PstDC3000 treatments, but also laid a foundation toward further understanding of metabolic regulation and responses underlying plant PTI and ETI.
  相似文献   

14.
Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant's defense system and to spread within the host.  相似文献   

15.
Salicylic acid (SA) has a central role in activating plant resistance to pathogens. SA levels increase in plant tissue following pathogen infection and exogenous SA enhances resistance to a broad range of pathogens. To study the relevance of the SA signaling in the flg22 response, we investigated the responses of SA-related mutants to flg22, a 22-amino acid peptide of the flagellin bacterial protein. We identified SA as an important component of the flg22-triggered oxidative burst, a very early event after flg22 detection, and gene induction, an early event. SA acted partially by enhancing accumulation of FLS2 mRNA. We also provide new evidence that NPR1 play a role in SA-induced priming event that enhances the flg22-triggered oxidative burst, which is correlated with enhancement of the flg22-induced callose deposition. Based on these observations, we conclude that SA signaling is required for early as well as late flg22 responses.  相似文献   

16.
The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development,1 nematode secreted effectors are becoming recognized as suppressors of plant immunity.2-4 Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction.3 To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.  相似文献   

17.
18.
Immune signaling networks must be tunable to alleviate fitness costs associated with immunity and, at the same time, robust against pathogen interferences. How these properties mechanistically emerge in plant immune signaling networks is poorly understood. Here, we discovered a molecular mechanism by which the model plant species Arabidopsis thaliana achieves robust and tunable immunity triggered by the microbe‐associated molecular pattern, flg22. Salicylic acid (SA) is a major plant immune signal molecule. Another signal molecule jasmonate (JA) induced expression of a gene essential for SA accumulation, EDS5. Paradoxically, JA inhibited expression of PAD4, a positive regulator of EDS5 expression. This incoherent type‐4 feed‐forward loop (I4‐FFL) enabled JA to mitigate SA accumulation in the intact network but to support it under perturbation of PAD4, thereby minimizing the negative impact of SA on fitness as well as conferring robust SA‐mediated immunity. We also present evidence for evolutionary conservation of these gene regulations in the family Brassicaceae. Our results highlight an I4‐FFL that simultaneously provides the immune network with robustness and tunability in A. thaliana and possibly in its relatives.  相似文献   

19.
20.
In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号