首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abscisic acid (ABA) induces a rapid and transient mitogen-activated protein (MAP) kinase activation in barley aleurone protoplasts. MAP kinase activity, measured as myelin basic protein phosphorylation by MAP kinase immunoprecipitates, increased after 1 min, peaked after 3 min, and decreased to basal levels after ~5 min of ABA treatment in vivo. Antibodies recognizing phosphorylated tyrosine residues precipitate with myelin basic protein kinase activity that has identical ABA activation characteristics and demonstrate that tyrosine phosphorylation of MAP kinase occurs during activation. The half-maximal concentration of ABA required for MAP kinase activation, 3 x 10-7 M, is very similar to that required for ABA-induced rab16 gene expression. The tyrosine phosphatase inhibitor phenylarsine oxide can completely block ABA-induced MAP kinase activation and rab16 gene expression. These results lead us to conclude that ABA activates MAP kinase via a tyrosine phosphatase and that these steps are a prerequisite for ABA induction of rab16 gene expression.  相似文献   

3.
4.
Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calcium-dependent interactions of PYR/PYL ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL-interacting partners that mediate a transient Ca2+-dependent interaction with phospholipid vesicles, which affects PYR/PYL subcellular localization and positively regulates ABA signaling.  相似文献   

5.
6.
7.
SNF1-related kinase (SnRK1) in plants belongs to a conserved family that includes sucrose non-fermenting 1 kinase (SNF1) in yeast and AMP-activated protein kinase (AMPK) in animals. These kinases play important roles in the regulation of cellular energy homeostasis and in response to stresses that deplete ATP, they inhibit energy consuming anabolic pathways and promote catabolism. Energy stress is sensed by increased AMP:ATP ratios and in plants, 5′-AMP inhibits inactivation of phosphorylated SnRK1 by phosphatase. In previous studies, we showed that geminivirus pathogenicity proteins interact with both SnRK1 and adenosine kinase (ADK), which phosphorylates adenosine to generate 5′-AMP. This suggested a relationship between SnRK1 and ADK, which we investigate in the studies described here. We demonstrate that SnRK1 and ADK physically associate in the cytoplasm, and that SnRK1 stimulates ADK in vitro by an unknown, non-enzymatic mechanism. Further, altering SnRK1 or ADK activity in transgenic plants altered the activity of the other kinase, providing evidence for in vivo linkage but also revealing that in vivo regulation of these activities is complex. This study establishes the existence of SnRK1-ADK complexes that may play important roles in energy homeostasis and cellular responses to biotic and abiotic stress.  相似文献   

8.
The salt stress-induced SALT-OVERLY-SENSITIVE (SOS) pathway in Arabidopsis (Arabidopsis thaliana) involves the perception of a calcium signal by the SOS3 and SOS3-like CALCIUM-BINDING PROTEIN8 (SCaBP8) calcium sensors, which then interact with and activate the SOS2 protein kinase, forming a complex at the plasma membrane that activates the SOS1 Na+/H+ exchanger. It has recently been reported that phosphorylation of SCaBP proteins by SOS2-like protein kinases (PKSs) stabilizes the interaction between the two proteins as part of a regulatory mechanism that was thought to be common to all SCaBP and PKS proteins. Here, we report the calcium-independent activation of PKS24 by SCaBP1 and show that activation is dependent on interaction of PKS24 with the C-terminal tail of SCaBP1. However, unlike what has been found for other PKS-SCaBP pairs, multiple amino acids in SCaBP1 are phosphorylated by PKS24, and this phosphorylation is dependent on the interaction of the proteins through the PKS24 FISL motif and on the efficient activation of PKS24 by the C-terminal tail of SCaBP1. In addition, we show that Thr-211 and Thr-212, which are not common phosphorylation sites in the conserved PFPF motif found in most SCaBP proteins, are important for this activation. Finally, we also found that SCaBP1-regulated PKS24 kinase activity is important for inactivating the Arabidopsis plasma membrane proton-translocating adenosine triphosphatase. Together, these results suggest the existence of a novel SCaBP-PKS regulatory mechanism in plants.Calcium is a ubiquitous second messenger that plays an important role in the regulation of plant growth and development. Many different types of calcium-binding proteins have been identified in plants (Harper et al., 2004), including the SALT-OVERLY-SENSITIVE3 (SOS3)-LIKE CALCIUM BINDING PROTEINS (SCaBPs; Liu and Zhu, 1998; Gong et al., 2004). Because the calcium-binding domain of these proteins shares sequence similarity with the yeast calcineurin B subunit, they have also been called CALCINEURIN B-LIKE PROTEINS (CBLs; Kudla et al., 1999; Luan et al., 2002). The founding member of this gene family, SOS3, was identified in a genetic screen from a salt-sensitive Arabidopsis (Arabidopsis thaliana) mutant (Liu and Zhu, 1998). SCaBP/CBL proteins interact with the SOS2-LIKE PROTEIN KINASES (PKSs)/CBL-INTERACTING PROTEIN KINASES (CIPKs; Shi et al., 1999; Halfter et al., 2000; Guo et al., 2001). The genetic linkage between these two families was established after identification of SOS2 from a genetic screen similar to the one that identified the sos3 mutant (Liu et al., 2000). SOS3 interacts with SOS2 in vivo and in vitro and activates SOS2 in a calcium-dependent manner in vitro (Halfter et al., 2000). The SOS3-SOS2 complex further activates SOS1, a plasma membrane (PM) Na+/H+ antiporter, by directly phosphorylating the SOS1 C terminus (Shi et al., 2000; Qiu et al., 2002; Quintero et al., 2002, 2011; Yu et al., 2010).In addition to the calcium-dependent activation of PKSs by SCaBP calcium sensors, two other regulatory mechanisms have been identified for these protein families. First, PKSs have a conserved 21-amino acid peptide (FISL motif) in their regulatory domain that is necessary for efficient interaction with the SCaBP calcium sensors (Guo et al., 2001; Albrecht et al., 2001; Gong et al., 2004). The PKS regulatory domain interacts with its kinase domain via the FISL motif to repress PKS activity; interaction of SCaBP with the PKS FISL motif releases the kinase domain inhibition allowing for kinase activity (Guo et al., 2001; Gong et al., 2004). Second, the PKSs phosphorylate a Ser residue in the conserved C-terminal PFPF motif of the SCaBP proteins. This phosphorylation enhances the interaction between the two proteins and fully activates the complex (Lin et al., 2009; Du et al., 2011; Hashimoto et al., 2012).In this study, we identified a novel PKS activation mechanism involving the calcium-independent activation of PKS24 by SCaBP1 and show that it requires binding of SCaBP1 to the FISL motif of PKS24 and the involvement of two Thr residues in the SCaBP1 C-terminal tail.  相似文献   

9.
10.
The SNF1 protein kinase and the associated SNF4 protein are required for release of glucose repression in Saccharomyces cerevisiae. To identify functionally related proteins, we selected genes that in multicopy suppress the raffinose growth defect of snf4 mutants. Among the nine genes recovered were two genes from the cAMP-dependent protein kinase (cAPK) pathway, MSI1 and PDE2. Increased dosage of these genes partially compensates for defects in nutrient utilization and sporulation in snf1 and snf4 null mutants, but does not restore invertase expression. These results suggest that SNF1 and cAPK affect some of the same cellular responses to nutrients. To examine the role of the cAPK pathway in regulation of invertase, we assayed mutants in which the cAPK is not modulated by cAMP. Expression of invertase was regulated in response to glucose and was dependent on SNF1 function. Thus, a cAMP-responsive cAPK is dispensable for regulation of invertase.  相似文献   

11.
秦至臻  戚欣  李静 《生物磁学》2011,(15):2992-2995
蛋白激酶C(Proteinkinase C,PKc)是细胞内一类重要的Ser/Thr激酶,调控多种生命活动的信号转导过程,目前已发现了至少11种亚型,其结构有一定的保守性而又有所差别,导致其功能和调控的多样性。新合成的PKC一般需要经历活化茎环(Acti.vation-loop,A—loop)、转角模体(Tummotif,T1V1)以及疏水模体(hydrophobic motif,HM)的程序性磷酸化过程才能成熟,获得进一步活化的功能。本文综述了近年来PKC的程序性磷酸化成熟以及活化的研究进展情况。  相似文献   

12.
蛋白激酶C(Protein kinase C,PKC)是细胞内一类重要的Ser/Thr激酶,调控多种生命活动的信号转导过程,目前已发现了至少11种亚型,其结构有一定的保守性而又有所差别,导致其功能和调控的多样性。新合成的PKC一般需要经历活化茎环(Activation-loop,A-loop)、转角模体(Turn motif,TM)以及疏水模体(hydrophobic motif,HM)的程序性磷酸化过程才能成熟,获得进一步活化的功能。本文综述了近年来PKC的程序性磷酸化成熟以及活化的研究进展情况。  相似文献   

13.
In glucose-grown cells, the Mig1 DNA-binding protein recruits the Ssn6-Tup1 corepressor to glucose-repressed promoters in the yeast Saccharomyces cerevisiae. Previous work showed that Mig1 is differentially phosphorylated in response to glucose. Here we examine the role of Mig1 in regulating repression and the role of the Snf1 protein kinase in regulating Mig1 function. Immunoblot analysis of Mig1 protein from a snf1 mutant showed that Snf1 is required for the phosphorylation of Mig1; moreover, hxk2 and reg1 mutations, which relieve glucose inhibition of Snf1, correspondingly affect phosphorylation of Mig1. We show that Snf1 and Mig1 interact in the two-hybrid system and also coimmunoprecipitate from cell extracts, indicating that the two proteins interact in vivo. In immune complex assays of Snf1, coprecipitating Mig1 is phosphorylated in a Snf1-dependent reaction. Mutation of four putative Snf1 recognition sites in Mig1 eliminated most of the differential phosphorylation of Mig1 in response to glucose in vivo and improved the two-hybrid interaction with Snf1. These studies, together with previous genetic findings, indicate that the Snf1 protein kinase regulates phosphorylation of Mig1 in response to glucose.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) pathways coordinate critical cellular responses to mitogens, stresses, and developmental cues. The coupling of MAPK kinase kinase (MAP3K) --> MAPK kinase (MEK) --> MAPK core pathways to cell surface receptors remains poorly understood. Recombinant forms of MAP3K MEK kinase 1 (MEKK1) interact in vivo and in vitro with the STE20 protein homologue germinal center kinase (GCK), and both GCK and MEKK1 associate in vivo with the adapter protein tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2). These interactions may couple TNF receptors to the SAPK/JNK family of MAPKs; however, a molecular mechanism by which these proteins might collaborate to recruit the SAPKs/JNKs has remained elusive. Here we show that endogenous GCK and MEKK1 associate in vivo. In addition, we have developed an in vitro assay system with which we demonstrate that purified, active GCK and TRAF2 activate MEKK1. The RING domain of TRAF2 is necessary for optimal in vitro activation of MEKK1, but the kinase domain of GCK is not. Autophosphorylation within the MEKK1 kinase domain activation loop is required for activation. Forced oligomerization also activates MEKK1, and GCK elicits enhanced oligomerization of coexpressed MEKK1 in vivo. These results represent the first activation of MEKK1 in vitro using purified proteins and suggest a mechanism for MEKK1 activation involving induced oligomerization and consequent autophosphorylation mediated by upstream proteins.  相似文献   

15.
Abstract: We report the cloning and characterization of a cDNA encoding a cdc2-related protein kinase, named PFTAIRE, that is expressed primarily in the postnatal and adult nervous system. We have demonstrated by in situ hybridization and indirect immunofluorescence that several populations of terminally differentiated neurons and some neuroglia expressed PFTAIRE mRNA and protein. In neurons, PFTAIRE protein was localized in the nucleus and cytoplasm of cell bodies. The anatomical, cellular, and ontogenic patterns of PFTAIRE expression in the nervous system differed from those of p34cdc2 and cdk5, which are expressed in brain and several other mitotic tissues. Proteins of ~58–60 kDa coprecipitated specifically with PFTAIRE from cytosolic protein preparations of adult mouse brain and transfected cells. These proteins appeared to be the major endogenous substrates associated with this kinase activity. The temporal and spatial expression patterns of PFTAIRE in the postnatal and adult nervous system suggest that PFTAIRE kinase activity may be associated with the postmitotic and differentiated state of cells in the nervous system and that its function may be distinct from those of p34cdc2 and cdk5.  相似文献   

16.
17.
Mori IC  Muto S 《Plant physiology》1997,113(3):833-839
A 49- and a 46-kD Ca2+-independent protein kinase and a 53-kD Ca2+-dependent protein kinase were detected in Vicia faba guard cell protoplasts (GCPs) by an in-gel protein kinase assay using myelin basic protein as a substrate. A 48-kD protein kinase designated as abscisic acid (ABA)-responsive protein kinase (ABR kinase) appeared when GCPs were treated with ABA. The activation of ABR kinase was suppressed by the protein kinase inhibitor staurosporine, indicating that a putative activator protein kinase phosphorylates and activates ABR kinase. The treatment of GCPs with 1,2-bis(o-aminophenoxy)ethan-N,N,N',N'-tetraacetic acid, a calcium chelator, suppressed the activation of ABR kinase, suggesting that an influx of extracellular Ca2+ is required for the activation. Staurosporine and K-252a inhibited both the activity of ABR kinase and the stomatal closure induced by ABA treatment of V. faba epidermal peels. These results suggest that ABR kinase and its activator kinase may consist of a protein kinase cascade in a signal transduction pathway linking ABA perception to stomatal closure. The mobility of the 53-kD Ca2+-dependent protein kinase in sodium dodecyl sulfate-polyacrylamide gel was shifted upon Ca2+ binding to the enzyme, thus exhibiting the characteristics of a Ca2+-dependent or calmodulin-like domain protein kinase. This kinase may be the activator of ABR kinase.  相似文献   

18.
19.
Abstract: Resiniferatoxin and capsaicin are sensory neurone-specific excitotoxins that operate a common cation channel in nociceptors. Resiniferatoxin is structurally similar to capsaicin and to phorbol esters. Specific [3H]-resiniferatoxin binding, which was detected in the membrane ( K D value 1.8 ± 0.2 n M ) but not cytosolic fraction of rat dorsal root ganglia, could not be displaced by phorbol 12,13-dibutyrate. Conversely, resiniferatoxin did not displace [3H]phorbol 12,13-dibutyrate binding in either the cytosolic or membrane fraction. Resiniferatoxin and capsaicin both caused translocation of protein kinase C in dorsal root ganglion neurones (EC50 value 18 ± 3 n M ). This translocation was greatly reduced but not abolished, in the absence of external Ca2+, suggesting that it was secondary to Ca2+ entry. Resiniferatoxin also caused direct activation of a Ca2+- and lipid-dependent kinase (or kinases) in the cytosolic fraction of dorsal root ganglia, at concentrations (100 n M to 10 µ M ) higher than required for displacement of [3H]resiniferatoxin binding or translocation of protein kinase C. Capsaicin (up to 10 µ M ) was unable to mimic this effect. These data imply that although resiniferatoxin-induced translocation of protein kinase C in dorsal root ganglion neurones was mainly indirect, it also caused direct activation of a protein kinase C-like kinase in these cells.  相似文献   

20.
Activation of Protein Kinase C by Trimethyltin: Relevance to Neurotoxicity   总被引:1,自引:2,他引:1  
Abstract: The differentiated PC12 cell neuronal model was used to determine the effect of trimethyltin (TMT) on protein kinase C (PKC). Cells treated with 5–20 µ M TMT showed a partial and sustained PKC translocation within 30 min and persisted over a 24-h period. TMT treatment was accompanied by a low level of PKC down-regulation over 24 h, which was small compared with that produced by phorbol esters. Confocal imaging of differentiated PC12 cells showed that PKC translocates to the plasma membrane and the translocation is blocked by the PKC inhibitor chelerythrine (1 µ M ). Phorbol myristate-induced PKC down-regulation or inhibition with chelerythrine provided protection against TMT-induced cytotoxicity. It was concluded that TMT-induced PKC translocation and activation contribute to the cytotoxicity of TMT in differentiated PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号