首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.

Background

Liver-selective thyromimetics have been reported to efficiently reduce plasma cholesterol through the hepatic induction of both, the low-density lipoprotein receptor (LDLr) and the high-density lipoprotein (HDL) receptor; the scavenger receptor class B type I (SR-BI). Here, we investigated the effect of the thyromimetic T-0681 on reverse cholesterol transport (RCT) and atherosclerosis, and studied the underlying mechanisms using different mouse models, including mice lacking LDLr, SR-BI, and apoE, as well as CETP transgenic mice.

Methodology/Principal Findings

T-0681 treatment promoted bile acid production and biliary sterol secretion consistently in the majority of the studied mouse models, which was associated with a marked reduction of plasma cholesterol. Using an assay of macrophage RCT in mice, we found T-0681 to significantly increase fecal excretion of macrophage-derived neutral and acidic sterols. No positive effect on RCT was found in CETP transgenic mice, most likely due to the observed decrease in plasma CETP mass. Studies in SR-BI KO and LDLr KO mice suggested hepatic LDLr to be necessary for the action of T-0681 on lipid metabolism, as the compound did not have any influence on plasma cholesterol levels in mice lacking this receptor. Finally, prolonged treatment with T-0681 reduced the development of atherosclerosis by 60% in apoE KOs on Western type diet. In contrast, at an earlier time-point T-0681 slightly increased small fatty streak lesions, in part due to an impaired macrophage cholesterol efflux capacity, when compared to controls.

Conclusions/Significance

The present results show that liver-selective thyromimetics can promote RCT and that such compounds may protect from atherosclerosis partly through induction of bile acid metabolism and biliary sterol secretion. On-going clinical trials will show whether selective thyromimetics do prevent atherosclerosis also in humans.  相似文献   

2.

Background

PDZK1 is a four PDZ-domain containing cytoplasmic protein that binds to a variety of membrane proteins via their C-termini and can influence the abundance, localization and/or function of its target proteins. One of these targets in hepatocytes in vivo is the HDL receptor SR-BI. Normal hepatic expression of SR-BI protein requires PDZK1 - <5% of normal hepatic SR-BI is seen in the livers of PDZK1 knockout mice. Progress has been made in identifying features of PDZK1 required to control hepatic SR-BI in vivo using hepatic expression of wild-type and mutant forms of PDZK1 in wild-type and PDZK1 KO transgenic mice. Such in vivo studies are time consuming and expensive, and cannot readily be used to explore many features of the underlying molecular and cellular mechanisms.

Methodology/Principal Findings

Here we have explored the potential to use either primary rodent hepatocytes in culture using 2D collagen gels with newly developed optimized conditions or PDZK1/SR-BI co-transfected cultured cell lines (COS, HEK293) for such studies. SR-BI and PDZK1 protein and mRNA expression levels fell rapidly in primary hepatocyte cultures, indicating this system does not adequately mimic hepatocytes in vivo for analysis of the PDZK1 dependence of SR-BI. Although PDZK1 did alter SR-BI protein expression in the cell lines, its influence was independent of SR-BI’s C-terminus, and thus is not likely to occur via the same mechanism as that which occurs in hepatocytes in vivo.

Conclusions/Significance

Caution must be exercised in using primary hepatocytes or cultured cell lines when studying the mechanism underlying the regulation of hepatic SR-BI by PDZK1. It may be possible to use SR-BI and PDZK1 expression as sensitive markers for the in vivo-like state of hepatocytes to further improve primary hepatocyte cell culture conditions.  相似文献   

3.

Aim

ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored.

Methods and Results

LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO''s, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×103 µm2), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×103 µm2; apoE KO: 402±78×103 µm2, respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×103 µm2). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05).

Conclusions

Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development.  相似文献   

4.
PDZK1 is a scaffold protein containing four PDZ protein interaction domains, which bind to the carboxy termini of a number of membrane transporter proteins, including ion channels (e.g., CFTR) and cell surface receptors. One of these, the HDL receptor, scavenger receptor class B type I (SR-BI), exhibits a striking, tissue-specific dependence on PDZK1 for its expression and activity. In PDZK1 knockout (KO) mice there is a marked reduction of SR-BI protein expression (approximately 95%) in the liver, but not in steroidogenic tissues or, as we show in this report, in bone marrow- or spleen-derived macrophages, or lung-derived endothelial cells. Because of hepatic SR-BI deficiency, PDZK1 KO mice exhibit dyslipidemia characterized by elevated plasma cholesterol carried in abnormally large HDL particles. Here, we show that inactivation of the PDZK1 gene promotes the development of aortic root atherosclerosis in apolipoprotein E (apoE) KO mice fed with a high fat/high cholesterol diet. However, unlike complete SR-BI-deficiency in SR-BI/apoE double KO mice, PDZK1 deficiency in PDZK1/apoE double knockout mice did not result in development of occlusive coronary artery disease or myocardial infarction, presumably because of their residual expression of SR-BI. These findings demonstrate that deficiency of an adaptor protein essential for normal expression of a lipoprotein receptor promotes atherosclerosis in a murine model. They also define PDZK1 as a member of the family of proteins that is instrumental in preventing cardiovascular disease by maintaining normal lipoprotein metabolism.  相似文献   

5.

Background

Mice with a deficiency in the HDL receptor SR-BI and low expression of a modified apolipoprotein E gene (SR-BI KO/ApoeR61h/h) called ‘HypoE’ when fed an atherogenic, ‘Paigen’ diet develop occlusive, atherosclerotic coronary arterial disease (CHD), myocardial infarctions (MI), and heart dysfunction and die prematurely (50% mortality ∼40 days after initiation of this diet). Because few murine models share with HypoE mice these cardinal, human-like, features of CHD, HypoE mice represent a novel, small animal, diet-inducible and genetically tractable model for CHD. To better describe the properties of this model, we have explored the effects of varying the composition and timing of administration of atherogenic diets, as well as social isolation vs. group housing, on these animals.

Methodology/Principal Findings

HypoE mice were maintained on a standard lab chow diet (control) until two months of age. Subsequently they received one of three atherogenic diets (Paigen, Paigen without cholate, Western) or control diet for varying times and were housed in groups or singly, and we determined the plasma cholesterol levels, extent of cardiomegaly and/or survival. The rate of disease progression could be reduced by lowering the severity of the atherogenic diet and accelerated by social isolation. Disease could be induced by Paigen diets either containing or free of cholate. We also established conditions under which CHD could be initiated by an atherogenic diet and then subsequently, by replacing this diet with standard lab chow, hypercholesterolemia could be reduced and progression to early death prevented.

Conclusions/Significance

HypoE mice provide a powerful, surgery-free, diet-‘titratable’ small animal model that can be used to study the onset of recovery from occlusive, atherosclerotic CHD and heart failure due to MI. HypoE mice can be used for the analysis of the effects of environment (diet, social isolation) on a variety of features of cardiovascular disease.  相似文献   

6.
7.

Background

Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy.

Methods

Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes.

Results

ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters.

Conclusion

Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy.  相似文献   

8.

Objective

Ghrelin acylation by ghrelin O-acyltransferase (GOAT) has recently been reported to be essential for the prevention of hypoglycemia during prolonged negative energy balance. Using a unique set of four different genetic loss-of-function models for the GOAT/ghrelin/growth hormone secretagogue receptor (GHSR) system, we thoroughly tested the hypothesis that lack-of-ghrelin activation or signaling would lead to hypoglycemia during caloric deprivation.

Methodology

Male and female knockout (KO) mice for GOAT, ghrelin, GHSR, or both ghrelin and GHSR (dKO) were subjected to prolonged calorie restriction (40% of ad libitum chow intake). Body weight, fat mass, and glucose levels were recorded daily and compared to wildtype (WT) controls. Forty-eight hour blood glucose profiles were generated for each individual mouse when 2% or less body fat mass was reached. Blood samples were obtained for analysis of circulating levels of acyl- and desacyl-ghrelin, IGF-1, and insulin.

Principal Findings

Chronic calorie restriction progressively decreased body weight and body fat mass in all mice regardless of genotype. When fat mass was depleted to 2% or less of body weight for 2 consecutive days, random hypoglycemic events occurred in some mice across all genotypes. There was no increase in the incidence of hypoglycemia in any of the four loss-of-function models for ghrelin signaling including GOAT KO mice. Furthermore, no differences in insulin or IGF-1 levels were observed between genotypes.

Conclusion

The endogenous GOAT-ghrelin-GHSR system is not essential for the maintenance of euglycemia during prolonged calorie restriction.  相似文献   

9.
10.

Aim

ATP-binding cassette transporter A1 (ABCA1) is an important mediator of macrophage cholesterol efflux. It mediates the efflux of cellular cholesterol to lipid-poor apolipoprotein A-I. LDL receptor (LDLr) knockout (KO) mice deficient for leukocyte ABCA1 (ABCA1 KO→LDLr KO) show increased atherosclerosis and splenic lipid accumulation despite largely attenuated serum cholesterol levels. In the present study, we aimed to explore the importance of the spleen for the atheroprotective effects of leukocyte ABCA1.

Methods

LDLr KO mice were transplanted with bone marrow from ABCA1 KO mice or wild-type (WT) controls. After 8 weeks recovery, mice were either splenectomized (SP-x) or underwent a sham operation, and were subsequently challenged with a Western-type diet (WTD).

Results

In agreement with previous studies, the atherosclerotic lesion area in ABCA1 KO→LDLr KO sham animals (655±82×103 µm2) was 1.4-fold (p = 0.03) larger compared to sham WT→LDLr KO mice (459±33×103 µm2) after 8 weeks WTD feeding, despite 1.7-fold (p<0.001) lower serum cholesterol levels. Interestingly, deletion of ABCA1 in leukocytes led to 1.6-fold higher neutrophil content in the spleen in absence of differences in circulating neutrophils. Levels of KC, an important chemoattractant for neutrophils, in serum, however, were increased 2.9-fold (p = 0.07) in ABCA1 KO→LDLr KO mice. SP-x induced blood neutrophilia as compared to WT→LDLr KO mice (1.9-fold; p<0.05), but did not evoke differences in serum cholesterol and anti-oxLDL antibody levels. Atherosclerotic lesion development, however, was 1.3-fold induced both in the presence and absence of leukocyte ABCA1 (WT: 614±106×103 µm2, ABCA1 KO: 786±44×103 µm2). Two-way ANOVA revealed independent effects on atherosclerosis for both leukocyte ABCA1 deficiency and SP-x (p<0.05).

Conclusions

The observed splenic alterations induced by leukocyte ABCA1 deficiency do not play a significant role in the anti-atherogenic effects of leukocyte ABCA1 on lesion development.  相似文献   

11.

Background

The apolipoprotein E4 (apoE4) genotype is a major risk factor for developing late-onset Alzheimer’s disease (AD). Inheritance of apoE4 is also associated with impairments in olfactory function in early stages of AD. In this project we examined the effects of the three common isoforms of human apoE (apoE2, apoE3, and apoE4) on neuronal differentiation and neurite outgrowth in explant cultures of mouse olfactory epithelium (OE).

Results

The OE cultures derived from apoE-deficient/knockout (KO) mice have significantly fewer neurons with shorter neurite outgrowth than cultures from wild-type (WT) mice. Treatment of the apoE KO culture with either purified human apoE2 or with human apoE3 significantly increased neurite outgrowth. In contrast, treatment with apoE4 did not have an effect on neurite outgrowth. The differential effects of human apoE isoforms on neurite outgrowth were abolished by blocking the low-density lipoprotein receptor-related protein (LRP) with lactoferrin and receptor-associated protein (RAP).

Conclusion

ApoE2 and apoE3 stimulate neurite outgrowth in OE cultures by interacting with the lipoprotein receptor, LRP. ApoE4, the isoform associated with AD, failed to promote neurite outgrowth, suggesting a potential mechanism whereby apoE4 may lead to olfactory dysfunction in AD patients.  相似文献   

12.
13.

Objective

Plasma apolipoprotein (apo)D, a ubiquitously expressed protein that binds small hydrophobic ligands, is found mainly on HDL particles. According to studies of human genetics and lipid disorders, plasma apoD levels positively correlate with HDL-cholesterol and apoAI levels. Thus, we tested the hypothesis that apoD was a regulator of HDL metabolism.

Methods & Results

We compared the plasma lipid and lipoprotein profiles of wild-type (WT) C57BL/6 mice with apoD−/− mice on a C57BL/6 background after receiving a high fat-high cholesterol diet for 12 weeks. ApoD−/− mice had higher HDL-cholesterol levels (61±13-apoD−/− vs. 52±10-WT-males; 37±11-apoD−/− vs. 22±2 WT-female) than WT mice with sex-specific changes in total plasma levels of cholesterol and other lipids. Compared to WT, the HDL of apoD−/− mice showed an increase in large, lipid-rich HDL particles and according to size various quantities and sizes of LDL particles. Plasma levels of lecithin:cholesterol acyltransferase in the control and apoD−/− mice were not different, however, plasma phospholipid transfer protein activity was modestly elevated (+10%) only in male apoD−/− mice. An in vivo HDL metabolism experiment with isolated Western-fed apoD−/− HDL particles showed that female apoD−/− mice had a 36% decrease in the fractional catabolic rate of HDL cholesteryl ester. Hepatic SR-BI and LDLR protein levels were significantly decreased; accordingly, LDL-cholesterol and apoB levels were increased in female mice.

Conclusion

In the context of a high fat-high cholesterol diet, apoD deficiency in female mice is associated with increases in both plasma HDL and LDL-cholesterol levels, reflecting changes in expression of SR-BI and LDL receptors, which may impact diet-induced atherosclerosis.  相似文献   

14.

Background

Xanthohumol is expected to be a potent anti-atherosclerotic agent due to its inhibition of cholesteryl ester transfer protein (CETP). In this study, we hypothesized that xanthohumol prevents atherosclerosis in vivo and used CETP-transgenic mice (CETP-Tg mice) to evaluate xanthohumol as a functional agent.

Methodology/Principal Findings

Two strains of mice, CETP-Tg and C57BL/6N (wild-type), were fed a high cholesterol diet with or without 0.05% (w/w) xanthohumol ad libitum for 18 weeks. In CETP-Tg mice, xanthohumol significantly decreased accumulated cholesterol in the aortic arch and increased HDL cholesterol (HDL-C) when compared to the control group (without xanthohumol). Xanthohumol had no significant effect in wild-type mice. CETP activity was significantly decreased after xanthohumol addition in CETP-Tg mice compared with the control group and it inversely correlated with HDL-C (%) (P<0.05). Furthermore, apolipoprotein E (apoE) was enriched in serum and the HDL-fraction in CETP-Tg mice after xanthohumol addition, suggesting that xanthohumol ameliorates reverse cholesterol transport via apoE-rich HDL resulting from CETP inhibition.

Conclusions

Our results suggest xanthohumol prevents cholesterol accumulation in atherogenic regions by HDL-C metabolism via CETP inhibition leading to apoE enhancement.  相似文献   

15.

Background

Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α) knockout (KO) mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism.

Methods

We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J) to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9–16 per genotype, per sex).

Results

In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours.

Conclusions

These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder.  相似文献   

16.

Introduction

Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.

Methods and Results

LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.

Conclusions

Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.  相似文献   

17.

Introduction

Several studies have confirmed the increasing rate of type 1 diabetes mellitus (T1DM) in children and the link with increasing BMI at diagnosis termed the ‘accelerator hypothesis’. Our objective was to assess whether changing incidence of type 1 diabetes in a group of children and adolescent from the Midwest United States was associated with changes in BMI.

Methods

Data from 1618 (52.1% M/47.9% F) newly-diagnosed children and adolescents (<19 years) with T1DM, admitted to Children''s Hospital of Wisconsin (CHW) between January 1995 and December 2004, was analyzed in relationship to body mass index (BMI) standard deviation score (SDS).

Results

An overall, 10-year cumulative incidence of 27.92 per 100,000 (19.12 to 41.72/100,000) was observed, with an average yearly cumulative incidence of 2.39%. The increase was largest in the younger age groups, 0–4, 5–9, and 10–14 having an average yearly increase of 2.4, 2.3, and 3.0%, respectively, corresponding to a relative 10-year increase of 25.3, 33.8, and 38.0%, respectively. Age at diagnosis was inversely correlated with BMI SDS (p<0.001) and remained significant for both males and females.

Conclusions

Annual incidence of T1DM increased two-fold at CHW over the 10-year study period. The majority of the increase was observed in the youngest age groups, which also appeared to be the heaviest. This research adds to the growing literature supporting the hypothesis that excess weight gain during childhood may be a risk factor for early manifestation of T1DM.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号