首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature-sensitive simian virus 40 (SV40) mutant, tsTNG-1, has been isolated from nitrosoguanidine-treated and SV40-infected African green monkey kidney (CV-1) cultures. Replication of virus at the nonpermissive temperature (38.7 C) was 3,000-fold less than at the permissive temperature (33.5 C). Plaque formation by SV40tsTNG-1 deoxyribonucleic acid (DNA) on CV-1 monolayers occurred normally at 33.5 C but was grossly inhibited at 38.7 C. The time at which virus replication was blocked at 38.7 C was determined by temperature-shift experiments. In shift-up experiments, cultures infected for various times at 33.5 C were shifted to 38.7 C. In shift-down experiments, cultures infected for various times at 38.7 C were shifted to 33.5 C. All cultures were harvested at 96 hr postinfection (PI). No virus growth occurred when the shift-up occurred before 40 hr PI. Maximum virus yields were obtained at 96 hr PI when the shift-down occurred at 66 hr, but only about 15% of the maximum yield was obtained when the shift-down occurred at 76 hr PI. These results indicate that SV40tsTNG-1 contains a conditional lethal mutation in a late viral gene function. Mutant SV40tsTNG-1 synthesized T antigen, viral capsid antigens, and viral DNA, and induced thymidine kinase activity at either 33.5 or 38.7 C. The properties of the SV40 DNA synthesized in mutant-infected CV-1 cells at 33.5 or 38.7 C were very similar to those of SV40 DNA made in parental virus-infected cells, as determined by nitrocellulose column chromatography, cesium-chloride-ethidium bromide equilibrium centrifugation, and by velocity centrifugation in neutral sucrose gradients. Mutant SV40tsTNG-1 enhanced cellular DNA synthesis in primary cultures of mouse kidney cells at 33.5 and 38.7 C and also transformed mouse kidney cultures at 36.5 C. SV40tsTNG-1 was recovered from clonal lines of transformed cells after fusion with susceptible CV-1 cells and incubation of heterokaryons at 33.5 C, but not at 38.7 C.  相似文献   

2.
同野生型大麦相比,突变大麦光系统II捕光色素蛋白复合物的含量明显降低,其多肽组分也发生了变化:26kD的多肽缺失,24kD、27kD和30kD多肽含量减少。RNA印迹杂交结果表明突变大麦中cab基因的表达与野生大麦基本一致,说明突变大麦中LHCI多肽的缺乏不是在转录水平引起的障碍,而很可能是受转录后水平的调节。突变大麦叶绿体的内膜系统处于发育的初级阶段,基粒较少,类囊体膜的垛叠也受到很大的限制,这可能与26kD多肽的缺失有关。  相似文献   

3.
The membrane occupation and recognition nexus protein 1 (MORN1) is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding. Lack of MORN1 resulted in double-headed parasites. These Janus-headed parasites form two complete apical complexes but fail to assemble a basal complex. Moreover, these parasites were capable of undergoing several more budding rounds resulting in the formation of up to 16-headed parasites conjoined at the basal end. Despite this segregation defect, the mother''s cytoskeleton was completely disassembled in every budding round. Overall this argues that successful completion of the budding is not required for cell cycle progression. None of the known basal complex components, including a set of recently identified inner membrane complex (IMC) proteins, localized correctly in these multi-headed parasites. These data suggest that MORN1 is essential for assembly of the basal complex, and that lack of the basal complex abolishes the contractile capacity assigned to the basal complex late in daughter formation. Consistent with this hypothesis we observe that MORN1 mutants fail to efficiently constrict and divide the apicoplast. We used the null background provided by the mutant to dissect the function of subdomains of the MORN1 protein. This demonstrated that deletion of a single MORN domain already prevented the function of MORN1 whereas a critical role for the short linker between MORN domains 6 and 7 was identified. In conclusion, MORN1 is required for basal complex assembly and loss of MORN1 results in defects in apicoplast division and daughter segregation.  相似文献   

4.
Kyle DJ  Zalik S 《Plant physiology》1982,70(4):1026-1031
Chloroplasts isolated from seedlings of a virescens mutant of barley (Hordeum vulgare L cv Gateway) grown for 6 days under continuous illumination had lower levels of photosystem II activities on a chlorophyll basis than wild-type seedlings. After 8 days, however, the photosystem II rates of the mutant and wild-type were approximately equal. Lower levels of the photosystem II activities in the mutant were correlated with a smaller functional plastoquinone pool size as determined by room temperature fluorescence induction. Higher levels of extractable plastoquinone A on a chlorophyll basis, however, were obtained from mutant chloroplasts. An increased room temperature fluorescence yield in the mutant was shown to be due to a higher level of initial fluorescence. A decreased sigmoidicity in the room temperature fluorescence induction transient in the presence of diuron and an increased 77 K fluorescence emission at 680 nanometers lead us to believe that a certain population of the light harvesting chlorophyll protein complex in the mutant membranes is unconnected to photo-system II reaction centers. Although photochemical activities of the mutant approach wild-type values as the mutant develops, the population of dissociated light harvesting complexes does not appear to change.  相似文献   

5.
6.
Photosystem II (PSII) is a multisubunit membrane protein complex that is assembled in a sequence of steps. However, the molecular mechanisms responsible for the assembly of the individual subunits into functional PSII complexes are still largely unknown. Here, we report the identification of a chloroplast protein, Low PSII Accumulation3 (LPA3), which is required for the assembly of the CP43 subunit in PSII complexes in Arabidopsis (Arabidopsis thaliana). LPA3 interacts with LPA2, a previously identified PSII CP43 assembly factor, and a double mutation of LPA2 and LPA3 is more deleterious for assembly than either single mutation, resulting in a seedling-lethal phenotype. Our results indicate that LPA3 and LPA2 have overlapping functions in assisting CP43 assembly and that cooperation between LPA2 and LPA3 is essential for PSII assembly. In addition, we provide evidence that LPA2 and LPA3 interact with Albino3 (Alb3), which is essential for thylakoid protein biogenesis. Thus, the function of Alb3 in some PSII assembly processes is probably mediated through interactions with LPA2 and LPA3.Oxygenic photosynthesis, in which oxygen and organic carbon are produced from water and carbon dioxide using sunlight, provides energy for nearly all living organisms on Earth. Four major multiprotein complexes, located in thylakoid membranes, are responsible for the capture of light and its conversion to chemical energy in eukaryotic photosynthetic organisms: PSI, PSII, cytochrome b6/f, and ATP synthase (Wollman et al., 1999; Nelson and Yocum, 2006). PSII catalyzes one of the most important of all biochemical reactions, the light-induced transfer of electrons from water to plastoquinone, which generates most of the oxygen in the Earth’s atmosphere. PSII consists of more than 20 subunits in higher plants (Wollman et al., 1999; Iwata and Barber, 2004; Nelson and Yocum, 2006). The PSII reaction center consists of the D1 and D2 proteins, the α- and β-subunits of cytochrome b559, and the PsbI protein, and the D1 and D2 heterodimers bind all the redox components essential for the primary charge separation (Nanba and Satoh, 1987). The PSII core complex additionally contains CP47, CP43, the oxygen-evolving complex, and several low molecular mass proteins (Wollman et al., 1999; Nelson and Yocum, 2006). CP47 and CP43, two inner chlorophyll a-binding proteins, are closely associated with, and located on opposite sides of, the PSII reaction center (Hankamer et al., 1999). The functional form of PSII cores in thylakoid membranes is dimeric and is associated with light-harvesting complex (LHC). In PSII-LHCII supercomplexes, PSII core dimers are surrounded by LHCII trimers, which consist of Lhcb1 and Lhcb2 proteins (Wollman et al., 1999; Iwata and Barber, 2004; Nelson and Yocum, 2006).Our knowledge of the molecular mechanisms involved in the biogenesis and assembly of PSII in the thylakoid membranes is still limited, although the structure and function of PSII have been extensively studied. Genetic and biochemical studies have elucidated several distinct steps that occur in PSII assembly. D2 and cytochrome b559 form an initial complex, which serves as a receptor for the cotranslational assembly of D1 (Adir et al., 1990; van Wijk et al., 1997; Müller and Eichacker, 1999; Zhang et al., 1999). The next step involves the association of CP47 with the PSII reaction center (Zhang et al., 1999; Rokka et al., 2005), while CP43 is synthesized independently and then continuously associates and dissociates with PSII (de Vitry et al., 1989; Zhang et al., 2000). The biogenesis of PSII involves “a control by epistasy of synthesis” process (Minai et al., 2006). D2 is required for D1 synthesis, which itself is needed for CP47 synthesis. However, many aspects of the processes involved in the oligomerization and coordination of the various PSII subunits are still unclear (Rochaix, 2001). Due to the structural complexity of PSII, its assembly consists of multiple assembly steps, which is likely to require the participation of a number of assembly factors.Several assembly factors involved in the biosynthesis and assembly of the PSII complex have been identified recently. For instance, the thylakoid lumen protein HCF136 is known to be required for the formation of PSII, since the hcf136 mutant is capable of synthesizing plastid-encoded proteins, but it does not appear to accumulate any stable PSII complexes, due to blockage of the assembly of the PSII reaction center (Meurer et al., 1998; Plücken et al., 2002). Alb3.1, a homolog of Arabidopsis (Arabidopsis thaliana) Albino3 (Alb3), is essential for the efficient assembly of PSII in Chlamydomonas reinhardtii, probably through interactions with D1 following its insertion (Ossenbühl et al., 2004), and another Alb3 homolog, Alb3.2, appears to be required for photosystem assembly in Chlamydomonas (Göhre et al., 2006). Coimmunoprecipitation analysis has shown that Alb3.1 and Alb3.2 interact directly, while Alb3.2 reportedly interacts with the PSI and PSII reaction centers proteins (Göhre et al., 2006). The lumenal immunophilins, AtCYP38 and FKBP20-2, have also been shown to be involved in PSII assembly (Lima et al., 2006; Fu et al., 2007; Sirpiö et al., 2008). In addition, we recently identified two PSII assembly factors, Low PSII Accumulation1 (LPA1) and LPA2, involved in PSII assembly. The LPA1 protein appears to be an integral membrane chaperone required for efficient assembly of the PSII core complex, probably through direct interaction with D1 (Peng et al., 2006). LPA2, which interacts with Alb3, forms a protein complex that assists CP43 assembly within PSII (Ma et al., 2007). These findings suggest that each stage of the PSII assembly process is assisted by one or more specific assembly factors, most of which have not yet been identified.Here, we report the identification of a lpa3 mutant with reduced levels of PSII. Functional characterization points to the possible role of LPA3 in assisting CP43 assembly within PSII. In addition, biochemical and genetic analyses indicate that an assembly complex of LPA3 and LPA2 is essential for PSII assembly.  相似文献   

7.
8.
The effect of temperature shiftdown on the assembly of ts3 virions was investigated by both scanning (SEM) and transmission (TEM) electron microscopy. Ts3 is a spontaneous temperature-sensitive mutant of Moloney murine leukemia virus (Mo-MuLV) which previous studies indicated to be defective in assembly or release of the virions. In the present study, both SEM and TEM revealed the following: (i) there were more cell-associated virions in ts3-infected cells grown at the nonpermissive temperature (39 degrees C) than either in cells grown at the permissive temperature (34 degrees C) or in wild-type MuLV-infected cells grown at 39 degrees C; (ii) there were more normal single particles than multiploids (virions with two or more pieces of genomic RNA) in ts3-infected cells grown at the nonpermissive temperature; (iii) there were more multiploids in ts3-infected cells grown at the nonpermissive temperature than either in cells grown at the permissive temperature or in wild-type MuLV-infected cells grown at the nonpermissive temperature; (iv) upon temperature shift from 39 to 34 degrees C, about 90% of the cell-associated virions dissociated from the cell surface. TEM studies also indicated that upon temperature shiftdown, virion assembly rapidly occurred. The above observations suggest that faulty assembly, which results in the production of multiploids, may not be the reason why ts3 virions accumulate on the cell surface at the nonpermissive temperature. The relatively higher proportion of multiploids found in ts3-infected cells grown at 39 degrees C compared with those grown at 34 degrees C may be due to the higher density of budding virions at the cell surface at the nonpermissive temperature, which increases the possibility of two or more particles assembling close to one another. The accumulation of ts3 virions in all stages of assembly at the nonpermissive temperature, together with the fact that rapid assembly and release of ts3 virions occurred on temperature shiftdown, indicates that virion assembly is restricted after it has been initiated. The probable role of altered glycoprotein(s) in restricting virion assembly is discussed.  相似文献   

9.
A divE mutant, which has a temperature-sensitive mutation in the tRNA1Ser gene, exhibits differential loss of the synthesis of certain proteins, such as β-galactosidase and succinate dehydrogenase, at nonpermissive temperatures. In Escherichia coli, the UCA codon is recognized only by tRNA1Ser. Several genes containing UCA codons are normally expressed after a temperature shift to 42°C in the divE mutant. Therefore, it is unlikely that the defect in protein synthesis at 42°C is simply caused by a defect in the decoding function of the mutant tRNA1Ser. In this study, we sought to determine the cause of the defect in lacZ gene expression in the divE mutant. It has also been shown that the defect in lacZ gene expression is accompanied by a decrease in the amount of lacZ mRNA. To examine whether inactivation of mRNA degradation pathways restores the defect in lacZ gene expression, we constructed divE mutants containing rne-1, rnb-500, and pnp-7 mutations in various combinations. We found that the defect was almost completely restored by introducing an rne-1 pnp-7 double mutation into the divE mutant. Northern hybridization analysis showed that the rne-1 mutation stabilized lacZ mRNA, whereas the pnp-7 mutation stabilized mutant tRNA1Ser, at 44°C. We present a mechanism that may explain these results.  相似文献   

10.
Mutations in protein kinases can drive cancer through alterations of the kinase activity or by uncoupling kinase activity from regulation. Changes to protein expression in Aurora A, a mitotic Ser/Thr kinase, are associated with the development of several human cancers, but the effects of somatic cancer-associated mutations have not been determined. In this study we show that Aurora A kinase activity is altered in different ways in three somatic cancer-associated mutations located within the catalytic domain; Aurora A(V174M) shows constitutively increased kinase activity, Aurora A(S155R) activity is decreased primarily due to misregulation, and Aurora A(S361*) activity is ablated due to loss of structural integrity. These alterations suggest vastly different mechanisms for the role of these three mutations in human cancer. We have further characterized the Aurora A(S155R) mutant protein, found that its reduced cellular activity and mislocalization are due to loss of interaction with TPX2, and deciphered the structural basis of the disruption at 2.5 Å resolution. Previous studies have shown that disruption of the Aurora A/TPX2 interaction results in defective spindles that generate chromosomal abnormalities. In a panel of 40 samples from microsatellite instability-positive colon cancer patients, we found one example in which the tumor contained only Aurora A(S155R), whereas the normal tissue contained only wild-type Aurora A. We propose that the S155R mutation is an example of a somatic mutation associated with this tumor type, albeit at modest frequency, that could promote aneuploidy through the loss of regulated interactions between Aurora A and its protein partners.  相似文献   

11.
12.
A mammalian plasma membrane protein(s) which catalyzes ATP-dependent transbilayer movement (flip-flop) of phosphatidylserine (PS) has been suggested to be involved in the formation and maintenance of membrane lipid asymmetry. Flip-flop of PS in the cell surface of nucleated cells was first described by O. C. Martin and R. E. Pagano (1987,J. Biol. Chem.262, 5890–5898). It has been suggested that flip-flop is involved in the internalization of exogenous PS in cultured cells. In the present study we report that incubation with an excess amount of PS is cytotoxic to Chinese hamster ovary (CHO) cells, while the same amount of phosphatidylcholine gives no effect. This effect allowed us to obtain PS-resistant cells among mutagenized CHO cells. Endocytosis-independent internalization of exogenous fluorescent PS analog was defective in 40% of the PS-resistant mutants. One of the mutants, PSR (phosphatidylserine resistant) 406 was further characterized. Unlike wild-type CHO cells, this mutant did not transport fluorescent PS significantly at 15°C. Fluorescent PS was not metabolized at 15°C in either wild-type or mutant cells. These results suggest that transbilayer movement of cell surface PS is defective in PS-resistant cells.  相似文献   

13.
We have examined the activity of the thiamin phosphate pyrophosphorylase in Arabidopsis thaliana wild type and in a mutant (th-1) which requires exogenous thiamin for growth. Mutant and wild-type plants grown in 1 × 10−7 molar thiamin were used for the examination of the production of thiamin and thiamin monophosphate (TMP) using 4-methyl-5-hydroxyethylthiazole phosphate and 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate as substrates. While the wild-type strain formed both thiamin and TMP, the th-1 mutant did not. When TMP was added to the extracts, the th-1 mutant, as well as wild type, produced thiamin. Accordingly, it was concluded that the th-1 mutant was defective in the activity of TMP pyrophosphorylase. Some of the characteristics of the enzyme from the wild-type plant were examined. The optimum temperature for the reaction is 45°C, and the Km values for the substrates are 2.7 × 10−6 molar for 4-methyl-5-hydroxyethylthiazole phosphate and 1.8 × 10−6 molar for 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate.  相似文献   

14.
When Rhizobium etli CE3 was grown in the presence of Phaseolus vulgaris seed extracts containing anthocyanins, its lipopolysaccharide (LPS) sugar composition was changed in two ways: greatly decreased content of what is normally the terminal residue of the LPS, di-O-methylfucose, and a doubling of the 2-O-methylation of other fucose residues in the LPS O antigen. R. etli strain CE395 was isolated after Tn5 mutagenesis of strain CE3 by screening for mutant colonies that did not change antigenically in the presence of seed extract. The LPS of this strain completely lacked 2-O-methylfucose, regardless of whether anthocyanins were present during growth. The mutant gave only pseudonodules in association with P. vulgaris. Interpretation of this phenotype was complicated by a second LPS defect exhibited by the mutant: its LPS population had only about 50% of the normal amount of O-antigen-containing LPS (LPS I). The latter defect could be suppressed genetically such that the resulting strain (CE395α395) synthesized the normal amount of an LPS I that still lacked 2-O-methylfucose residues. Strain CE395α395 did not elicit pseudonodules but resulted in significantly slower nodule development, fewer nodules, and less nitrogenase activity than lps+ strains. The relative symbiotic deficiency was more severe when seeds were planted and inoculated with bacteria before they germinated. These results support previous conclusions that the relative amount of LPS I on the bacterial surface is crucial in symbiosis, but LPS structural features, such as 2-O-methylation of fucose, also may facilitate symbiotic interactions.  相似文献   

15.
A hyperphenylalaninemic mouse mutant, hph-1, has been identified in the progeny of mice treated with the mutagen ethylnitrosourea. Phenylalanine hydroxylase activity levels in mutant liver lysates are reduced relative to normal, but correction for the amount of enzyme protein present demonstrates that the specific activity of this enzyme is normal in mutant mice. Quinonoid-dihydropteridine reductase activity is also normal. GTP-cyclohydrolase activity levels are essentially absent early in life and greatly diminished later in life. This finding has significant implications for the study of catecholamine neurotransmitter synthesis because GTP-cyclohydrolase catalyzes an important step in the de novo synthesis of tetrahydrobiopterin, an enzyme cofactor required for the synthesis of 3,4-dihydroxyphenylalanine (DOPA) and serotonin.  相似文献   

16.
17.
18.
Photosystem I (PSI) is a large pigment-protein complex and one of the two photosystems that drive electron transfer in oxygenic photosynthesis. We identified a nuclear gene required specifically for the accumulation of PSI in a forward genetic analysis of chloroplast biogenesis in maize. This gene, designated psa2, belongs to the “GreenCut” gene set, a group of genes found in green algae and plants but not in non-photosynthetic organisms. Disruption of the psa2 ortholog in Arabidopsis likewise resulted in the specific loss of PSI proteins. PSA2 harbors a conserved domain found in DnaJ chaperones where it has been shown to form a zinc finger and to have protein-disulfide isomerase activity. Accordingly, PSA2 exhibited protein-disulfide reductase activity in vitro. PSA2 localized to the thylakoid lumen and was found in a ∼250-kDa complex harboring the peripheral PSI protein PsaG but lacking several core PSI subunits. PSA2 mRNA is coexpressed with mRNAs encoding various proteins involved in the biogenesis of the photosynthetic apparatus with peak expression preceding that of genes encoding structural components. PSA2 protein abundance was not decreased in the absence of PSI but was reduced in the absence of the PSI assembly factor Ycf3. These findings suggest that a complex harboring PSA2 and PsaG mediates thiol transactions in the thylakoid lumen that are important for the assembly of PSI.  相似文献   

19.
Yu Liu  Amy Chang 《Genetics》2009,181(3):907-915
Pma1-10 is a mutant plasma membrane ATPase defective at the restrictive temperature in stability at the cell surface. At 37°, Pma1-10 is ubiquitinated and internalized from the plasma membrane for degradation in the vacuole. YVH1, encoding a tyrosine phosphatase, is a mutant suppressor of pma1-10; in the absence of Yvh1, Pma1-10 remains stable at the plasma membrane, thereby permitting cells to grow. The RING finger domain of Yvh1, but not its phosphatase domain, is required for removal of mutant Pma1-10 from the plasma membrane. Yvh1 is a novel ribosome assembly factor: in yvh1Δ cells, free 60S and 80S ribosomal subunits are decreased, free 40S subunits are increased, and half-mer polysomes are accumulated. Pma1-10 is also stabilized by deletion of 60S ribosomal proteins Rpl19a and Rpl35a. We propose that changes in ribosome biogenesis caused by loss of Yvh1 or specific ribosomal proteins have effects on the plasma membrane, perhaps by producing specific translational changes.  相似文献   

20.
Havaux M  Tardy F 《Plant physiology》1997,113(3):913-923
The chlorophyll-b-less chlorina-f2 barley mutant is deficient in the major as well as some minor light-harvesting chlorophyll-protein complexes of photosystem II (LHCII). Although the LHCII deficiency had relatively minor repercussions on the leaf photosynthetic performances, the responses of photosystem II (PSII) to elevated temperatures and to bright light were markedly modified. The chlorina-f2 mutation noticeably reduced the thermostability of PSII, with thermal denaturation of PSII starting at about 35[deg]C and 38.5[deg]C in chlorina-f2 and in the wild type, respectively. The increased susceptibility of PSII to heat stress in chlorina-f2 leaves was due to the weakness of its electron donor side, with moderate heat stress causing detachment of the 33-kD extrinsic PSII protein from the oxygen-evolving complex. Prolonged dark adaptation of chlorina-f2 leaves was also observed to inhibit the PSII donor side. However, weak illumination slowly reversed the dark-induced inhibition of PSII in chlorina-f2 and cancelled the difference in PSII thermostability observed between chlorina-f2 and wild-type leaves. The mutant was more sensitive to photoinhibition than the wild type, with strong light stress impairing the PSII donor side in chlorina-f2 but not in the wild type. This difference was not observed in anaerobiosis or in the presence of 3-(3,4-dichlorophenyl)- 1,1-dimethylurea, diuron. The acceptor side of PSII was only slightly affected by the mutation and/or the aforementioned stress conditions. Taken together, our results indicate that LHCII stabilize the PSII complexes and maintain the water-oxidizing system in a functional state under varying environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号