首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F508del-CFTR, the most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, disrupts intracellular trafficking leading to cystic fibrosis (CF). The trafficking defect of F508del-CFTR can be rescued by simultaneous inactivation of its four RXR motifs (4RK). Proteins involved in the F508del-CFTR trafficking defect and/or rescue are therefore potential CF therapeutic targets. We sought to identify these proteins by investigating differential proteome modulation in BHK cells over-expressing wt-CFTR, F508del-CFTR or the revertant F508del/4RK-CFTR. By 2-dimensional electrophoresis-based proteomics and western blot approaches we demonstrated that over-expression of F508del/4RK-CFTR modulates the expression of a large number of proteins, many of which are reported interactors of CFTR and/or 14-3-3 with potential roles in CFTR trafficking. GRP78/BiP, a marker of ER stress and unfolded protein response (UPR), is up-regulated in cells over-expressing either F508del-CFTR or F598del/4RK-CFTR. However, over-expression of F508del/4RK-CFTR induces the up-regulation of many other UPR-associated proteins (e.g. GRP94, PDI, GRP75/mortalin) and, interestingly, the down-regulation of proteasome components associated with CFTR degradation, such as the proteasome activator PA28 (PSME2) and COP9 signalosome (COPS5/CSN5). Moreover, the F508del-CFTR-induced proteostasis imbalance, which involves some heat shock chaperones (e.g. HSP72/Hpa2), ER-EF-hand Ca2+-binding proteins (calumenin) and the proteasome activator PA28 (PSME2), tends to be ‘restored’, i.e., in BHK cells over-expressing F508del/4RK-CFTR those proteins tend to have expression levels similar to the wild-type ones. These findings indicate that a particular cellular environment orchestrated by the UPR contributes to and/or is compatible with F508del/4RK-CFTR rescue.  相似文献   

2.
The most common mutation in cystic fibrosis, F508del, results in cystic fibrosis transmembrane conductance regulator protein (CFTR) that is retained in the endoplasmic reticulum (ER). Retention is dependent on chaperone proteins, many of which, like calnexin, require calcium for optimal activity. Here, we show that a limited and a maintained ER calcium level is sufficient to inhibit the F508del-CFTR/calnexin interaction and to restore the cAMP-dependent CFTR chloride transport, thus showing the correction of abnormal trafficking. We used Western blot analysis, iodide efflux and calcium measurement techniques applied to the human airway epithelial cystic fibrosis cell line CF15 (F508del/F508del). The inhibition of ER calcium pump, with thapsigargin, curcumin, 2,5-di(t-butyl)hydroquinone or cyclopiazonic acid, maintains a threshold levels of calcium that is correlated to the recovery of endogenous F508del-CFTR transport activity. In particular, cyclopiazonic acid restores a 2-aminoethyoxydiphenyl borate-sensitive F508del-CFTR trafficking with an EC50 of 915 nm. By contrast, the 1,4,5-trisphosphate or IP3 receptor activators, i.e., ATP and histamine, while transiently emptying the ER intracellular calcium store, did not affect the trafficking of F508del-CFTR. Our data suggest that decreasing the ER calcium level is not sufficient to restore the defective trafficking of F508del-CFTR, whereas decreasing and also maintaining low ER calcium level allow correction of defective biosynthetic pathway of endogenous F508del-CFTR in human airway epithelial cells.  相似文献   

3.
In many cells, increase in intracellular calcium ([Ca(2+)](i)) activates a Ca(2+)-dependent chloride (Cl(-)) conductance (CaCC). CaCC is enhanced in cystic fibrosis (CF) epithelial cells lacking Cl(-) transport by the CF transmembrane conductance regulator (CFTR). Here, we show that in freshly isolated nasal epithelial cells of F508del-homozygous CF patients, expression of TMEM16A and bestrophin 1 was unchanged. However, calcium signaling was strongly enhanced after induction of expression of F508del-CFTR, which is unable to exit the endoplasmic reticulum (ER). Since receptor-mediated [Ca(2+)](i) increase is Cl(-) dependent, we suggested that F508del-CFTR may function as an ER chloride counter-ion channel for Ca(2+). This was confirmed by expression of the double mutant F508del/G551D-CFTR, which remained in the ER but had no effects on [Ca(2+)](i). Moreover, F508del-CFTR could serve as a scavenger for inositol-1,4,5-trisphosphate [IP3] receptor binding protein released with IP(3) (IRBIT). Our data may explain how ER-localized F508del-CFTR controls intracellular Ca(2+) signaling.  相似文献   

4.
5.
As a misfolding protein, almost all of F508del-CFTR is degraded by the ubiquitin–proteasome system before its maturation, which results in no membrane expression of cystic fibrosis transmembrane conductance regulator (CFTR) and therefore, no chloride secretion across epithelial cells of cystic fibrosis (CF) patients. The conjugation of ubiquitin (Ub) chains to protein substrates is necessary for the proteasomal degradation of F508del-CFTR. Ubiquitin contains seven lysine (K) residues, all of which can be conjugated to one another, forming poly-ubiquitin chains on substrates, either by mixing together, or by only one type of lysine providing sorting signals for different pathways. Here, we report that four lysine-linked poly-Ub chains (LLPUCs) were involved in F508del-CFTR biogenesis: LLPUCs linked by K11 or K48 facilitated F508del-CFTR degradation, whereas the other two linked by K63 and K33 protected F508del-CFTR from degradation. LLPUC K11 is more potent for F508del-CFTR degradation than K48. F508del-CFTR utilizes four specific lysine-linked poly-Ub chains during its biogenesis for opposite destiny through different identification by proteasomal shuttle protein or receptors. These findings provide new insights into the CF pathogenesis and are expected to facilitate the development of therapies for this devastating disease.  相似文献   

6.
Mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) cause CF (cystic fibrosis), a fatal genetic disease commonly leading to airway obstruction with recurrent airway inflammation and infection. Pulmonary obstruction in CF has been linked to the loss of CFTR function as a regulated Cl- channel on the lumen-facing membrane of the epithelium lining the airways. We have learned much about the molecular basis for nucleotide- and phosphorylation-dependent regulation of channel activity of the normal (wild-type) version of the CFTR protein through electrophysiological studies. The major CF-causing mutation, F508del-CFTR, causes the protein to misfold and be retained in the ER (endoplasmic reticulum). Importantly, recent studies in cell culture have shown that retention in the ER can be 'corrected' through the application of certain small-molecule modulators and, once at the surface, the altered channel function of the major mutant can be 'potentiated', pharmacologically. Importantly, two such small molecules, a 'corrector' (VX-809) and a 'potentiator' (VX-770) compound are undergoing clinical trial for the treatment of CF. In this chapter, we describe recent discoveries regarding the wild-type CFTR and F508del-CFTR protein, in the context of molecular models based on X-ray structures of prokaryotic ABC (ATP-binding cassette) proteins. Finally, we discuss the promise of small-molecule modulators to probe the relationship between structure and function in the wild-type protein, the molecular defects caused by the most common mutation and the structural changes required to correct these defects.  相似文献   

7.
We are here showing that peripheral mononuclear blood cells (PBMC) from cystic fibrosis (CF) patients contain almost undetectable amounts of mature 170 kDa CF-transmembrane conductance regulator (CFTR) and a highly represented 100 kDa form. This CFTR protein, resembling the form produced by calpain digestion and present, although in lower amounts, also in normal PBMC, is localized in cytoplasmic internal vesicles. These observations are thus revealing that the calpain-mediated proteolysis is largely increased in cells from CF patients. To characterize the process leading to the accumulation of such split CFTR, FRT cells expressing the F508del-CFTR mutated channel protein and human leukaemic T cell line (JA3), expressing wild type CFTR were used. In in vitro experiments, the sensitivity of the mutated channel to the protease is identical to that of the wild type, whereas in Ca2+-loaded cells F508del-CFTR is more susceptible to digestion. Inhibition of intracellular calpain activity prevents CFTR degradation and leads to a 10-fold increase in the level of F508del-CFTR at the plasma membrane, further indicating the involvement of calpain activity in the maintenance of very low levels of mature channel form. The higher sensitivity to calpain of the mutated 170 kDa CFTR results from a reduced affinity for HSP90 causing a lower degree of protection from calpain digestion. The recovery of HSP90 binding capacity in F508del-CFTR, following digestion, explains the large accumulation of the 100 kDa CFTR form in circulating PBMC from CF patients.  相似文献   

8.
Cystic fibrosis (CF) is the most common Caucasian autosomal recessive disease. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, which is a chloride (Cl(-)) channel. The most common mutation leads to a missing phenylalanine at position 508 (DeltaF508). The DeltaF508-CFTR protein is misfolded and retained in the endoplasmic reticulum and may trigger the unfolded protein response (UPR). Furthermore, CF is accompanied by inflammation and infection, which are also involved in the UPR. To date, the UPR transducer ATF6 and ER stress sensor Grp78 have been used as UPR markers. Therefore, our aim was to study the activation of ATF6 and Grp78 in transfected human epithelial cells expressing the DeltaF508-CFTR protein, and we showed that they are activated in these cells. We investigated the effect of exogenous UPR inducers thapsigargin (Tg) and tunicamycin (Tu) on Grp78 and ATF6 expression. Whereas the cells reacted to the UPR induction, we show a difference in the electrophoretic pattern of ATF6. The Grp78/ATF6 complex was previously described, but its stability during UPR is controversial. Using co-immunoprecipitation we show that it is stable in DeltaF508-CFTR-expressing cells and is maintained under UPR conditions. Finally, using siRNA, we show that decreased ATF6 expression induces increased cAMP-dependent halide flux through DeltaF508-CFTR due to its increased membrane localization. Therefore, our results suggest that UPR may be triggered in CF and that ATF6 may be a therapeutic target.  相似文献   

9.
The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is hypothesized to regulate F508del-CFTR folding by electrostatic effects. This work provides useful insights for designing optimized synthetic structural correctors of CFTR mutant proteins in the future.  相似文献   

10.
F508del is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that is responsible for the genetic disease Cystic Fibrosis (CF). It results in a major failure of CFTR to traffic to the apical membrane of epithelial cells, where it should function as a chloride (Cl-) channel. Most studies on localization, processing and cellular trafficking of wild-type (wt) and F508del-CFTR have been performed in non-epithelial cells. Notwithstanding, polarized epithelial cells possess distinctly organized and regulated membrane trafficking pathways. We have used Madin-Darby canine kidney (MDCK) type II cells (proximal tubular cells which do not express endogenous CFTR) to generate novel epithelial, polarized cellular models stably expressing wt- or F508del-CFTR through transduction with recombinant lentiviral vectors. Characterization of these cell lines shows that wt-CFTR is correctly processed and apically localized, producing a cAMP-activated Cl- conductance. In contrast, F508del-CFTR is mostly detected in itsimmature form, localized intracellularly and producing only residual Cl- conductance. These novel cell lines constitute bona fide models and significantly improved resources to investigate the molecular mechanisms of polarized membrane traffic of wt- and F508del-CFTR in the same cellular background. They are also useful to identify/validate novel therapeutic compounds for CF.  相似文献   

11.
The most common cystic fibrosis causing mutation F508del induces early degradation and reduced trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels to the apical membrane of epithelial cells. In the human nasal epithelial cells JME/CF15, we previously reported that vasoactive intestinal peptide (VIP) exposure corrects trafficking and membrane insertion of functional F508del-CFTR channels at 37°C. Correction of trafficking was PKA dependent, whereas enhanced membrane localization involved PKC. In the present study, we have identified PKCε as the isoform involved in VIP-dependent F508del-CFTR membrane insertion. Iodide effluxes were used to monitor the presence of VIP-rescued functional F508del-CFTR channels at the surface of JME/CF15 cells maintained at 37°C. Iodide efflux peaks measured in response to stimulation with forskolin were insensitive to PKC α, β, γ, δ, ζ inhibitors. In contrast, efflux peaks were completely inhibited by pretreatment with the PKCε inhibitor peptide EAVSLKPT with an IC(50) of 4.9 μM or by PKCε small interfering RNA (siRNA). Immunostaining and confocal microscopy confirmed that membrane localization of F508del-CFTR induced by VIP was abolished in the presence of EAVSLKPT but not with other isoform inhibitors. In recombinant baby hamster kidney cells, endogenously expressing PKCε but no VIP receptor, wild-type, and F508del-CFTR sensitivity to cpt-cAMP stimulation was increased by PMA treatment. Biotinylation assays and immunoblots confirmed that PMA (0.5-2 h) induced a greater than threefold increase in membrane CFTR, whereas forskolin had no effect. The PMA effect was abolished by specifically inhibiting PKCε (EAVSLKPT IC(50) = 5.7 μM) but not other PKC isoforms. Taken together, these results indicate that stimulating PKCε by VIP or PMA increases membrane insertion and activity of WT- and F508del-CFTR.  相似文献   

12.
In the genetic disease cystic fibrosis (CF), the most common mutation F508del promotes the endoplasmic reticulum (ER) retention of misfolded CF proteins. Furthermore, in homozygous F508del-CFTR airway epithelial cells, the histamine Ca2+ mobilization is abnormally increased. Because the uptake of Ca2+ by mitochondria during Ca2+ influx or Ca2+ release from ER stores may be crucial for maintaining a normal Ca2+ homeostasis, we compared the mitochondria morphology and distribution by transmission electron microscopy technique and the mitochondria membrane potential variation (ΔΨmit) using a fluorescent probe (TMRE) on human CF (CF-KM4) and non-CF (MM39) tracheal serous gland cell lines. Confocal imaging of Rhod-2–AM-loaded or of the mitochondrial targeted cameleon 4mtD3cpv-transfected human CF and non-CF cells, were used to examine the ability of mitochondria to sequester intracellular Ca2+. The present study reveals that (i) the mitochondria network is fragmented in F508del-CFTR cells, (ii) the ΔΨmit of CF mitochondria is depolarized compared non-CF mitochondria, and (iii) the CF mitochondria Ca2+ uptake is reduced compared non-CF cells. We propose that these defects in airway epithelial F508del-CFTR cells are the consequence of mitochondrial membrane depolarization leading to a deficient mitochondrial Ca2+ uptake.  相似文献   

13.

Introduction

Although most individuals with cystic fibrosis (CF) develop progressive obstructive lung disease, disease severity is highly variable, even for individuals with similar CFTR mutations. Measurements of chloride transport as expression of CFTR function in nasal epithelial cells correlate with pulmonary function and suggest that F508del-CFTR is expressed at the apical membrane. However, an association between quantitative apical CFTR expression in nasal epithelium and CF disease severity is still missing.

Methods and Materials

Nasal epithelial cells from healthy individuals and individuals with CF between 12–18 years were obtained by nasal brushing. Apical CFTR expression was measured by confocal microscopy using CFTR mAb 596. Expression was compared between both groups and expression in CF nasal epithelial cells was associated with standardized pulmonary function (FEV1%).

Results

The proportion of cells expressing apical CFTR in columnar epithelium is lower in CF compared to non-CF. The apical CFTR expression level was significantly correlated with FEV1% in F508del homozygous subjects (r = 0.63, p = 0.012).

Conclusion

CFTR expression in nasal epithelial cells is lower in subjects with CF compared to healthy subjects. The proportion of cells expressing F508del-CFTR at the apical membrane is variable between subjects and is positively correlated with FEV1% in F508del-CFTR homozygous subjects.  相似文献   

14.
12-O-tetradecanoyl phorbol-13-acetate-induced sequence 7/interferon related development regulator 1 (Tis7/IFRD1) has been recently identified as a modifier gene in lung inflammatory disease severity in patients with cystic fibrosis (CF), based upon its capacity to regulate inflammatory activities in neutrophils. In CF patients, the F508del mutation in the Cftr gene encoding a chloride channel, the CF transmembrane conductance regulator (CFTR) in airway epithelial cells results in an exaggerated inflammatory response of these cells. At present, it is unknown whether the Tis7/IFRD1 gene product is expressed in airway epithelial cells. We therefore investigated the possibility there is an intrinsic alteration in Tis7/IFRD1 protein level in cells lacking CFTR function in tracheal homogenates of F508del-CFTR mice and in a F508del-CFTR human bronchial epithelial cell line (CFBE41o cells). When Tis7/IFRD1 protein was detectable, trachea from F508del-CFTR mice showed a reduction in the level of Tis7/IFRD1 protein compared to wild-type control littermates. A significant reduction of IFRD1 protein level was found in CFBE41o cells compared to normal bronchial epithelial cells 16HBE14o. Surprisingly, messenger RNA level of IFRD1 in CFBE41o cells was found elevated. Treating CFBE41o cells with the antioxidant glutathione rescued the IFRD1 protein level closer to control level and also reduced the pro-inflammatory cytokine IL-8 release. This work provides evidence for the first time of reduced level of IFRD1 protein in murine and human F508del-CFTR airway epithelial cell models, possibly mediated in response to oxidative stress which might contribute to the exaggerated inflammatory airway response observed in CF patients homozygous for the F508del mutation.  相似文献   

15.
Cystic fibrosis (CF) is characterised by impaired epithelial ion transport and is caused by mutations in the cystic fibrosis conductance regulator protein (CFTR), a cAMP/PKA and ATP-regulated chloride channel. We recently demonstrated a cAMP/PKA/calcineurin (CnA)-driven association between annexin 2 (anx 2), its cognate partner –S100A10 and cell surface CFTR. The complex is required for CFTR and outwardly rectifying chloride channel function in epithelia. Since the cAMP/PKA-induced Cl current is absent in CF epithelia, we hypothesized that the anx 2–S100A10/CFTR complex may be defective in CFBE41o cells expressing the commonest F508del-CFTR (ΔF-CFTR) mutation. Here, we demonstrate that, despite the presence of cell surface ΔF-CFTR, cAMP/PKA fails to induce anx 2–S100A10/CFTR complex formation in CFBE41o− cells homozygous for F508del-CFTR. Mechanistically, PKA-dependent serine phosphorylation of CnA, CnA–anx 2 complex formation and CnA-dependent dephosphorylation of anx 2 are all defective in CFBE41o− cells. Immunohistochemical analysis confirms an abnormal cellular distribution of anx 2 in human and CF mouse epithelia.

Thus, we demonstrate that cAMP/PKA/CnA signaling pathway is defective in CF cells and suggest that loss of anx 2–S100A10/CFTR complex formation may contribute to defective cAMP/PKA-dependent CFTR channel function.  相似文献   


16.
Cystic Fibrosis (CF) is the most frequent fatal genetic disease in Caucasian populations. Mutations in the chloride channel CF Transmembrane Conductance Regulator (CFTR) gene are responsible for functional defects of the protein and multiple associated dysregulations. The most common mutation in patients with CF, F508del-CFTR, causes defective CFTR protein folding. Thus minimal levels of the receptor are expressed at the cell surface as the mutated CFTR is retained in the endoplasmic reticulum (ER) where it correlates with defective calcium (Ca2+) homeostasis. In this study, we discovered that the Ca2+ binding protein Calumenin (CALU) is a key regulator in the maintenance of ER-Ca2+ calcium homeostasis in both wild type and F508del-CFTR expressing cells. Calumenin modulates SERCA pump activity without drastically affecting ER-Ca2+ concentration. In addition, reducing Calumenin expression in CF cells results in a partial restoration of CFTR activity, highlighting a potential function of Calumenin in CFTR maturation. These findings demonstrate a pivotal role for Calumenin in CF cells, providing insights into how modulation of Calumenin expression or activity may be used as a potential therapeutic tool to correct defects in F508del-CFTR.  相似文献   

17.
18.
F508del-CFTR, the most common mutation in cystic fibrosis (CF) patients, impairs CFTR trafficking to plasma membrane leading to its premature proteasomal degradation. Several post-translational modifications have been identified on CFTR with multiple roles in stability, localization and channel function, and the possibility to control the enzymes responsible of these modifications has been long considered a potential therapeutic strategy. Protein kinase CK2 has been previously suggested as an important player in regulating CFTR functions and it has been proposed as a pharmacological target in a combinatory therapy to treat CF patients. However, the real implication of CK2 in F508del-CFTR proteostasis, and in particular the hypothesis that its inhibition could be important in CF therapies, is still elusive. Here, by using immortalized cell lines, primary human cells, and knockout cell lines deprived of CK2 subunits, we do not disclose any direct correlation between F508del-CFTR proteostasis and CK2 expression/activity. Rather, our data indicate that the CK2α′ catalytic subunit should be preserved rather than inhibited for F508del rescue by the correctors of class-1, such as VX-809, disclosing new important features in CF therapeutic approaches.  相似文献   

19.
A561E, a novel cystic fibrosis (CF) associated mutation in the first nucleotide binding domain of CFTR, is the second most common CF mutation in Portugal. Properties of the A561E-CFTR protein were studied by immunoblotting, pulse-chase, immunocytochemistry, and MQAE halide-efflux assay in stably transfected BHK cells. Altogether, results presented here suggest that A561E causes protein mislocalization in the endoplasmic reticulum where the mutant protein must be trapped by the quality control mechanism. We conclude that A561E originates a protein trafficking defect, thus belonging to class II of CFTR mutations. As it is the case for F508del-CFTR (the most common CF mutant), low temperature treatment partially rescues a functional A561E-CFTR channel, suggesting that substitution of glutamic acid for alanine at position 561 does not completely abolish CFTR function. Pharmacological strategies previously reported for treatment of CF patients with the F508del mutation could thus be also effective in CF patients bearing the A561E mutation.  相似文献   

20.
Biosynthesis and folding of multidomain transmembrane proteins is a complex process. Structural fidelity is monitored by endoplasmic reticulum (ER) quality control involving the molecular chaperone calnexin. Retained misfolded proteins undergo ER-associated degradation (ERAD) through the ubiquitin-proteasome pathway. Our data show that the major degradation pathway of the cystic fibrosis transmembrane conductance regulator (CFTR) with F508del (the most frequent mutation found in patients with the genetic disease cystic fibrosis) from the ER is independent of calnexin. Moreover, our results demonstrate that inhibition of mannose-processing enzymes, unlike most substrate glycoproteins, does not stabilize F508del-CFTR, although wild-type (wt) CFTR is drastically stabilized under the same conditions. Together, our data support a novel model by which wt and F508del-CFTR undergo ERAD from two distinct checkpoints, the mutant being disposed of independently of N-glycosidic residues and calnexin, probably by the Hsc70/Hsp70 machinery, and wt CFTR undergoing glycan-mediated ERAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号