首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5′ cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species.  相似文献   

2.
Processing bodies (P-bodies) are ribonucleoprotein granules that contain mRNAs, RNA-binding proteins and effectors of mRNA turnover. While P-bodies have been reported to contain translationally repressed mRNAs, a causative role for P-bodies in regulating mRNA decay has yet to be established. Enhancer of decapping protein 4 (EDC4) is a core P-body component that interacts with multiple mRNA decay factors, including the mRNA decapping (DCP2) and decay (XRN1) enzymes. EDC4 also associates with the RNA endonuclease MARF1, an interaction that antagonizes the decay of MARF1-targeted mRNAs. How EDC4 interacts with MARF1 and how it represses MARF1 activity is unclear. In this study, we show that human MARF1 and XRN1 interact with EDC4 using analogous conserved short linear motifs in a mutually exclusive manner. While the EDC4–MARF1 interaction is required for EDC4 to inhibit MARF1 activity, our data indicate that the interaction with EDC4 alone is not sufficient. Importantly, we show that P-body architecture plays a critical role in antagonizing MARF1-mediated mRNA decay. Taken together, our study suggests that P-bodies can directly regulate mRNA turnover by sequestering an mRNA decay enzyme and preventing it from interfacing with and degrading targeted mRNAs.  相似文献   

3.
4.
5.
In somatic cells, untranslated mRNAs accumulate in cytoplasmic foci called processing bodies or P-bodies. P-bodies contain complexes that inhibit translation and stimulate mRNA deadenylation, decapping, and decay. Recently, certain P-body proteins have been found in germ granules, RNA granules specific to germ cells. We have investigated a possible connection between P-bodies and germ granules in Caenorhabditis elegans. We identify PATR-1, the C. elegans homolog of the yeast decapping activator Pat1p, as a unique marker for P-bodies in C. elegans embryos. We find that P-bodies are inherited maternally as core granules that mature differently in somatic and germline blastomeres. In somatic blastomeres, P-bodies recruit the decapping activators LSM-1 and LSM-3. This recruitment requires the LET-711/Not1 subunit of the CCR4-NOT deadenylase and correlates spatially and temporally with the onset of maternal mRNA degradation. In germline blastomeres, P-bodies are maintained as core granules lacking LSM-1 and LSM-3. P-bodies interact with germ granules, but maintain distinct dynamics and components. The maternal mRNA nos-2 is maintained in germ granules, but not in P-bodies. We conclude that P-bodies are distinct from germ granules, and represent a second class of RNA granules that behaves differently in somatic and germline cells.  相似文献   

6.
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), that contain untranslating mRNAs in conjunction with proteins involved in translation repression and mRNA decapping and degradation. However, the order of protein assembly into P-bodies and the interactions that promote P-body assembly are unknown. To gain insight into how yeast P-bodies assemble, we examined the P-body accumulation of Dcp1p, Dcp2p, Edc3p, Dhh1p, Pat1p, Lsm1p, Xrn1p, Ccr4p, and Pop2p in deletion mutants lacking one or more P-body component. These experiments revealed that Dcp2p and Pat1p are required for recruitment of Dcp1p and of the Lsm1-7p complex to P-bodies, respectively. We also demonstrate that P-body assembly is redundant and no single known component of P-bodies is required for P-body assembly, although both Dcp2p and Pat1p contribute to P-body assembly. In addition, our results indicate that Pat1p can be a nuclear-cytoplasmic shuttling protein and acts early in P-body assembly. In contrast, the Lsm1-7p complex appears to primarily function in a rate limiting step after P-body assembly in triggering decapping. Taken together, these results provide insight both into the function of individual proteins involved in mRNA degradation and the mechanisms by which yeast P-bodies assemble.  相似文献   

7.
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.  相似文献   

8.
The mRNA processing body (P-body) is a cellular structure that regulates gene expression by degrading cytoplasmic mRNA. The objective of this study was to identify and characterize novel components of the mammalian P-body. Approximately 5% of patients with the autoimmune disease primary biliary cirrhosis have antibodies directed against this structure. Serum from one of these patients was used to identify a cDNA encoding Ge-1, a 1,401-amino-acid protein. Ge-1 contains an N-terminal WD 40 motif and C-terminal domains characterized by a repeating psi(X(2-3)) motif. Ge-1 co-localized with previously identified P-body components, including proteins involved in mRNA decapping (DCP1a and DCP2) and the autoantigen GW 182. The Ge-1 C-terminal domain was necessary and sufficient to target the protein to P-bodies. Following exposure of cells to oxidative stress, Ge-1-containing P-bodies were found adjacent to TIA-containing stress granules. During the recovery period, TIA returned to the nucleus while Ge-1-containing P-bodies localized to the perinuclear region. siRNA-mediated knock-down of Ge-1 resulted in loss of P-bodies containing Ge-1, DCP1a, and DCP2. In contrast, Ge-1-containing P-bodies persisted despite knock-down of DCP2. Taken together, the results of this study show that Ge-1 is a central component of P-bodies and suggest that Ge-1 may act prior to the 5(')-decapping step in mRNA degradation.  相似文献   

9.
Translation and messenger RNA (mRNA) degradation are important sites of gene regulation, particularly during stress where translation and mRNA degradation are reprogrammed to stabilize bulk mRNAs and to preferentially translate mRNAs required for the stress response. During stress, untranslating mRNAs accumulate both in processing bodies (P-bodies), which contain some translation repressors and the mRNA degradation machinery, and in stress granules, which contain mRNAs stalled in translation initiation. How signal transduction pathways impinge on proteins modulating P-body and stress granule formation and function is unknown. We show that during stress in Saccharomyces cerevisiae, Dcp2 is phosphorylated on serine 137 by the Ste20 kinase. Phosphorylation of Dcp2 affects the decay of some mRNAs and is required for Dcp2 accumulation in P-bodies and specific protein interactions of Dcp2 and for efficient formation of stress granules. These results demonstrate that Ste20 has an unexpected role in the modulation of mRNA decay and translation and that phosphorylation of Dcp2 is an important control point for mRNA decapping.  相似文献   

10.
Targeting of aberrant mRNAs to cytoplasmic processing bodies   总被引:12,自引:0,他引:12  
Sheth U  Parker R 《Cell》2006,125(6):1095-1109
In eukaryotes, a specialized pathway of mRNA degradation termed nonsense-mediated decay (NMD) functions in mRNA quality control by recognizing and degrading mRNAs with aberrant termination codons. We demonstrate that NMD in yeast targets premature termination codon (PTC)-containing mRNA to P-bodies. Upf1p is sufficient for targeting mRNAs to P-bodies, whereas Upf2p and Upf3p act, at least in part, downstream of P-body targeting to trigger decapping. The ATPase activity of Upf1p is required for NMD after the targeting of mRNAs to P-bodies. Moreover, Upf1p can target normal mRNAs to P-bodies but not promote their degradation. These observations lead us to propose a new model for NMD wherein two successive steps are used to distinguish normal and aberrant mRNAs.  相似文献   

11.
Animal miRNAs commonly mediate mRNA degradation and/or translational repression by binding to their target mRNAs. Key factors for miRNA-mediated mRNA degradation are the components of the miRNA effector complex (AGO1 and GW182) and the general mRNA degradation machinery (deadenylation and decapping enzymes). The CCR4-NOT1 complex required for the deadenylation of target mRNAs is directly recruited to the miRNA effector complex. However, it is unclear whether the following decapping step is only a consequence of deadenylation occurring independent of the miRNA effector complex or e.g. decapping activators can get recruited to the miRNA effector complex. In this study we performed split-affinity purifications in Drosophila cells and provide evidence for the interaction of the decapping activator HPat with the miRNA effector complex. Furthermore, in knockdown analysis of various mRNA degradation factors we demonstrate the importance of NOT1 for this interaction. This suggests that deadenylation and/or the recruitment of NOT1 protein precedes the association of HPat with the miRNA effector complex. Since HPat couples deadenylation and decapping, the recruitment of HPat to the miRNA effector complex provides a mechanism to commit the mRNA target for degradation.  相似文献   

12.
PUF proteins are eukaryotic RNA-binding proteins that repress specific mRNAs. The mechanisms and corepressors involved in PUF repression remain to be fully identified. Here, we investigated the mode of repression by Saccharomyces cerevisiae Puf5p and Puf4p and found that Puf5p specifically requires Eap1p to repress mRNAs, whereas Puf4p does not. Surprisingly, we observed that Eap1p, which is a member of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP) class of translational inhibitors, does not inhibit the efficient polyribosome association of a Puf5p target mRNA. Rather, we found that Eap1p accelerates mRNA degradation by promoting decapping, and the ability of Eap1p to interact with eIF4E facilitates this activity. Deletion of EAP1 dramatically reduces decapping, resulting in accumulation of deadenylated, capped mRNA. In support of this phenotype, Eap1p associates both with Puf5p and the Dhh1p decapping factor. Furthermore, recruitment of Eap1p to downregulated mRNA is mediated by Puf5p. On the basis of these results, we propose that Puf5p promotes decapping by recruiting Eap1p and associated decapping factors to mRNAs. The implication of these findings is that a 4E-BP can repress protein expression by promoting specific mRNA degradation steps in addition to or in lieu of inhibiting translation initiation.  相似文献   

13.
14.
15.
Processing bodies and plant development   总被引:1,自引:0,他引:1  
Processing bodies (P-bodies) contain RNA-protein complexes linked to cytoplasmic RNA decay pathways including mRNA decapping, nonsense-mediated decay (NMD) and small RNA-mediated decay. Plants deficient in P-body components display severe developmental perturbations, suggesting that these cytoplasmic bodies play important roles in regulating gene expression during plant development. Here, we summarize recent progress in the genetic dissection of P-body components and their roles in translational repression and mRNA decapping.  相似文献   

16.
17.
We have shown previously that poliovirus infection disrupts cytoplasmic P-bodies in infected mammalian cells. During the infectious cycle, poliovirus causes the directed cleavage of Dcp1a and Pan3, coincident with the dispersion of P-bodies. We now show that expression of Dcp1a prior to infection, surprisingly, restricts poliovirus infection. This inhibition of infection was independent of P-body formation because expression of GFP-Dcp1a mutants that cannot enter P-bodies restricted poliovirus infection similar to wild-type GFP-Dcp1a. Expression of wild-type or mutant GFP-Dcp1a induced phosphorylation of eIF2α through the eIF2α kinase protein kinase R (PKR). Activation of PKR required the amino-terminal EVH1 domain of Dcp1a. This PKR-induced translational inhibition appears to be specific to Dcp1a because the expression of other P-body components, Pan2, Pan3, Ccr4, or Caf1, did not result in the inhibition of poliovirus gene expression or induce eIF2α phosphorylation. The translation blockade induced by Dcp1a expression suggests novel signaling linking RNA degradation/decapping and regulation of translation.  相似文献   

18.
19.
Members of the (L)Sm (Sm and Sm-like) protein family are found across all kingdoms of life and play crucial roles in RNA metabolism. The P-body component EDC3 (enhancer of decapping 3) is a divergent member of this family that functions in mRNA decapping. EDC3 is composed of a N-terminal LSm domain, a central FDF domain, and a C-terminal YjeF-N domain. We show that this modular architecture enables EDC3 to interact with multiple components of the decapping machinery, including DCP1, DCP2, and Me31B. The LSm domain mediates DCP1 binding and P-body localization. We determined the three-dimensional structures of the LSm domains of Drosophila melanogaster and human EDC3 and show that the domain adopts a divergent Sm fold that lacks the characteristic N-terminal α-helix and has a disrupted β4-strand. This domain remains monomeric in solution and lacks several features that canonical (L)Sm domains require for binding RNA. The structures also revealed a conserved patch of surface residues that are required for the interaction with DCP1 but not for P-body localization. The conservation of surface and of critical structural residues indicates that LSm domains in EDC3 proteins adopt a similar fold that has separable novel functions that are absent in canonical (L)Sm proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号