首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Colonial morphology of pathogenic bacteria is often associated with virulence. For M. tuberculosis, the causative agent of tuberculosis (TB), virulence is correlated with the formation of serpentine cords, a morphology that was first noted by Koch. We identified a mycobacterial gene, pcaA, that we show is required for cording and mycolic acid cyclopropane ring synthesis in the cell wall of both BCG and M. tuberculosis. Furthermore, we show that mutants of pcaA fail to persist within and kill infected mice despite normal initial replication. These results indicate that a novel member of a family of cyclopropane synthetases is necessary for lethal chronic persistent M. tuberculosis infection and define a role for cyclopropanated lipids in bacterial pathogenesis.  相似文献   

3.
Phosphorylated lipids play important roles in biological systems, not only as structural moieties but also as modulators of cellular function. Phospholipids of pathogenic bacteria are known to play roles both as membrane components and as factors that modulate the infectious process. Mycobacterium tuberculosis is, however, noteworthy in that it has an extremely diverse repertoire of biologically active phosphorylated lipids that, in the absence of a specialized protein translocation system, appear to constitute the main means of communication with the host. Many of these lipids are derived from phosphatidylinositol (PI) that is differentially processed to give rise to phosphatidylinositol mannosides (PIMs) or lipoarabinomannan. In preliminary studies on the lipid processing enzymes associated with the bacterial cell wall, a kinase activity was noted that gave rise to a novel lipid species released by the bacterium. It was determined that this kinase activity was encoded by the ORF Rv2252. Rv2252 demonstrates the capacity to phosphorylate various amphipathic lipids of host and bacterial origin, in particular a M. tuberculosis derived diacylglycerol. Targeted deletion of the rv2252 gene resulted in disruption of the production of certain higher order PIM species, suggesting a role for Rv2252 in the biosynthetic pathway of PI, a PIM precursor.  相似文献   

4.
The evolutionary timing and spread of the Mycobacterium tuberculosis complex (MTBC), one of the most successful groups of bacterial pathogens, remains largely unknown. Here, using mycobacterial tandem repeat sequences as genetic markers, we show that the MTBC consists of two independent clades, one composed exclusively of M. tuberculosis lineages from humans and the other composed of both animal and human isolates. The latter also likely derived from a human pathogenic lineage, supporting the hypothesis of an original human host. Using Bayesian statistics and experimental data on the variability of the mycobacterial markers in infected patients, we estimated the age of the MTBC at 40,000 years, coinciding with the expansion of "modern" human populations out of Africa. Furthermore, coalescence analysis revealed a strong and recent demographic expansion in almost all M. tuberculosis lineages, which coincides with the human population explosion over the last two centuries. These findings thus unveil the dynamic dimension of the association between human host and pathogen populations.  相似文献   

5.
Mycobacterium tuberculosis is a facultative intracellular pathogen that parasitizes macrophages by modulating properties of the Mycobacterium-containing phagosome. Mycobacterial phagosomes do not fuse with late endosomal/lysosomal organelles but retain access to early endosomal contents by an unknown mechanism. We have previously reported that mycobacterial phosphatidylinositol analog lipoarabinomannan (LAM) blocks a trans-Golgi network-to-phagosome phosphatidylinositol 3-kinase-dependent pathway. In this work, we extend our investigations of the effects of mycobacterial phosphoinositides on host membrane trafficking. We present data demonstrating that phosphatidylinositol mannoside (PIM) specifically stimulated homotypic fusion of early endosomes in an ATP-, cytosol-, and N-ethylmaleimide sensitive factor-dependent manner. The fusion showed absolute requirement for small Rab GTPases, and the stimulatory effect of PIM increased upon partial depletion of membrane Rabs with RabGDI. We found that stimulation of early endosomal fusion by PIM was higher when phosphatidylinositol 3-kinase was inhibited by wortmannin. PIM also stimulated in vitro fusion between model phagosomes and early endosomes. Finally, PIM displayed in vivo effects in macrophages by increasing accumulation of plasma membrane-endosomal syntaxin 4 and transferrin receptor on PIM-coated latex bead phagosomes. In addition, inhibition of phagosomal acidification was detected with PIM-coated beads. The effects of PIM, along with the previously reported action of LAM, suggest that M. tuberculosis has evolved a two-prong strategy to modify its intracellular niche: its products block acquisition of late endosomal/lysosomal constituents, while facilitating fusion with early endosomal compartments.  相似文献   

6.
Human alveolar macrophages (AMphi) undergo apoptosis following infection with Mycobacterium tuberculosis in vitro. Apoptosis of cells infected with intracellular pathogens may benefit the host by eliminating a supportive environment for bacterial growth. The present study compared AMphi apoptosis following infection by M. tuberculosis complex strains of differing virulence and by Mycobacterium kansasii. Avirulent or attenuated bacilli (M. tuberculosis H37Ra, Mycobacterium bovis bacillus Calmette-Guérin, and M. kansasii) induced significantly more AMphi apoptosis than virulent strains (M. tuberculosis H37Rv, Erdman, M. tuberculosis clinical isolate BMC 96.1, and M. bovis wild type). Increased apoptosis was not due to greater intracellular bacterial replication because virulent strains grew more rapidly in AMphi than attenuated strains despite causing less apoptosis. These findings suggest the existence of mycobacterial virulence determinants that modulate the apoptotic response of AMphi to intracellular infection and support the hypothesis that macrophage apoptosis contributes to innate host defense in tuberculosis.  相似文献   

7.
The macrophage is the niche of the intracellular pathogen Mycobacterium tuberculosis. Induction of macrophage apoptosis by CD4(+) or CD8(+) T cells is accompanied by reduced bacterial counts, potentially defining a host defense mechanism. We have already established that M. tuberculosis-infected primary human macrophages have a reduced susceptibility to Fas ligand (FasL)-induced apoptosis. To study the mechanisms by which M. tuberculosis prevents apoptotic signaling, we have generated a cell culture system based on PMA- and IFN-gamma-differentiated THP-1 cells recapitulating the properties of primary macrophages. In these cells, nucleotide-binding oligomerization domain 2 or TLR2 agonists and mycobacterial infection protected macrophages from apoptosis and resulted in NF-kappaB nuclear translocation associated with up-regulation of the antiapoptotic cellular FLIP. Transduction of a receptor-interacting protein-2 dominant-negative construct showed that nucleotide-binding oligomerization domain 2 is not involved in protection in the mycobacterial infection system. In contrast, both a dominant-negative construct of the MyD88 adaptor and an NF-kappaB inhibitor abrogated the protection against FasL-mediated apoptosis, showing the implication of TLR2-mediated activation of NF-kappaB in apoptosis protection in infected macrophages. The apoptosis resistance of infected macrophages might be considered as an immune escape mechanism, whereby M. tuberculosis subverts innate immunity signaling to protect its host cell against FasL(+)-specific cytotoxic lymphocytes.  相似文献   

8.
More than 2 billion people are infected with Mycobacterium. tuberculosis; however, only 5-10% of those infected will develop active disease. Recent data suggest that containment is controlled locally at the level of the granuloma and that granuloma architecture may differ even within a single infected individual. Formation of a granuloma likely requires exposure to mycobacterial components released from infected macrophages, but the mechanism of their release is still unclear. We hypothesize that exosomes, which are small membrane vesicles containing mycobacterial components released from infected macrophages, could promote cellular recruitment during granuloma formation. In support of this hypothesis, we found that C57BL/6 mouse-derived bone marrow macrophages treated with exosomes released from M. tuberculosis-infected RAW264.7 cells secrete significant levels of chemokines and can induce migration of CFSE-labeled macrophages and splenocytes. Exosomes isolated from the serum of M. bovis bacillus Calmette-Guérin-infected mice could also stimulate macrophage production of chemokines and cytokines ex vivo, but the level and type differed during the course of a 60-d infection. Of interest, the exosome concentration in serum correlated strongly with mouse bacterial load, suggesting some role in immune regulation. Finally, hollow fiber-based experiments indicated that macrophages treated with exosomes released from M. tuberculosis-infected cells could promote macrophage recruitment in vivo. Exosomes injected intranasally could also recruit CD11b(+) cells into the lung. Overall, our study suggests that exosomes may play an important role in recruiting and regulating host cells during an M. tuberculosis infection.  相似文献   

9.
10.
The modification of metabolic pathways to allow for a dormant lifestyle appears to be an important feature for the survival of pathogenic bacteria within their host. One regulatory mechanism for persistent Mycobacterium tuberculosis infections is the stringent response. In this study, we analyze the stringent response of a nonpathogenic, saprophytic mycobacterial species, Mycobacterium smegmatis. The use of M. smegmatis as a tool for studying the mycobacterial stringent response was demonstrated by measuring the expression of two M. tuberculosis genes, hspX and eis, in M. smegmatis in the presence and absence of rel(Msm). The stringent response plays a role in M. smegmatis cellular and colony formation that is suggestive of changes in the bacterial cell wall structure.  相似文献   

11.
The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.  相似文献   

12.
The release of proinflammatory cytokines after mycobacterial infection is a host immune response that may be propitious or deleterious to the host. Elevated levels of interleukin (IL)-6 are present in plasma of patients with active tuberculosis infection. The aim of this study was to investigate the role of mitogen-activated protein kinases in the secretion of interleukin-6 in THP-1 cells and human primary monocytes that were infected with Mycobacterium tuberculosis H37Rv, and its regulation by N-acetyl-L-cysteine, a potential antimycobacterial agent. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv induced rapidly, in a time-dependent manner, the phosphorylation of mitogen-activated protein kinase kinase 3/6 and p38 mitogen-activated protein kinase, accompanied by an upregulation of interleukin-6. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and nuclear factor-kappaB, we found that extracellular-signal regulated kinase 1/2, p38 mitogen-activated protein kinase and nuclear factor-kappaB were essential for M. tuberculosis H37Rv-induced interleukin-6 production in human primary monocytes. Pretreatment with N-acetyl-L-cysteine reduced, in a dose-dependent manner, M. tuberculosis H37Rv-induced activation of mitogen-activated protein kinase kinase 3/6 and interleukin-6 production in THP-1 cells.  相似文献   

13.
CD1 and CD1-restricted T cells in infections with intracellular bacteria   总被引:7,自引:0,他引:7  
Glycolipid-specific, CD1a-, b- and c-dependent cytotoxic T cells have recently been shown to be involved in the host response against tuberculosis. These CD1 molecules 'sample' mycobacterial glycolipids from different intracellular sites in the infected cell. Additionally, upon microbial encounter, CD1d-dependent natural killer T cells promptly produce cytokines and perform regulatory activities. Here, we discuss the intracellular localization of CD1 molecules and mycobacterial lipids and the role of CD1-mediated T-cell responses in mycobacterial infections.  相似文献   

14.
The ability of Mycobacterium tuberculosis to persist in a dormant state is a hallmark of tuberculosis. An insight into the expression of mycobacterial proteins will contribute to our understanding of bacterial physiology in vivo. To this end, the expression of FtsZ, Acr and DevR was assessed in the lung granulomas of guinea pigs infected with M. tuberculosis. Antigen immunostaining was then compared with the detection of acid-fast bacilli (AFB) and mycobacterial DNA. Surprisingly, immunostaining for all three antigens was observed throughout the course of infection; maximum expression of all antigens was noted at 20 weeks of infection. The intensity of immunostaining correlated well with the presence of intact bacteria, suggesting that mycobacterial antigens in the extracellular fraction have a short half-life; in contrast to protein, extracellular bacterial DNA was found to be more stable. Immunostaining for bacterial division and dormancy markers could not clearly distinguish between replicating and non-replicating organisms during the course of infection. The detection of Acr and DevR from 4 weeks onwards indicates that the dormancy proteins are expressed from early on in infection. Both antigen staining and DNA detection from intact bacilli were useful for detecting intact mycobacteria in the absence of AFB.  相似文献   

15.
Several human pathogens are to be found within the bacterial genus Mycobacterium, notably Mycobacterium tuberculosis, the causative agent of tuberculosis, one of the most threatening of human infectious diseases, with an annual lethality of about two million people. The characteristic mycobacterial cell envelope is the dominant feature of the biology of M. tuberculosis and other mycobacterial pathogens, based on sugars and lipids of exceptional structure. The cell wall consists of a peptidoglycan-arabinogalactan-mycolic acid complex beyond the plasma membrane. Free-standing lipids, lipoglycans, and proteins intercalate within this complex, complement the mycolic acid monolayer and may also appear in a capsular-like arrangement. The consequences of these structural oddities are an extremely robust and impermeable cell envelope. This review reflects on these entities from the perspective of their synthesis, particularly the structural and functional aspects of the glycosyltransferases (GTs) of M. tuberculosis, the dominating group of enzymes responsible for the terminal stages of their biosynthesis. Besides the many nucleotide-sugar dependent GTs with orthologs in prokaryotes and eukaryotes, M. tuberculosis and related species of the order Actinomycetales, in light of the highly lipophilic environment prevailing within the cell envelope, carry a significant number of GTs of the GT-C class dependent on polyprenyl-phosphate-linked sugars. These are of special emphasis in this review.  相似文献   

16.
Lipid droplets (LDs) are organelles that have multiple roles in inflammatory and infectious diseases. LD act as essential platforms for immunometabolic regulation, including as sites for lipid storage and metabolism, inflammatory lipid mediator production, and signaling pathway compartmentalization. Accumulating evidence indicates that intracellular pathogens may exploit host LDs as source of nutrients and as part of their strategy to promote immune evasion. Notably, numerous studies have demonstrated the interaction between LDs and pathogen-containing phagosomes. However, the mechanism involved in this phenomenon remains elusive. Here, we observed LDs and PLIN2 surrounding M. bovis BCG-containing phagosomes, which included observations of a bacillus cell surrounded by lipid content inside a phagosome and LAM from mycobacteria co-localizing with LDs; these results were suggestive of exchange of contents between these compartments. By using beads coated with M.tb lipids, we demonstrated that LD-phagosome associations are regulated through the mycobacterial cell wall components LAM and PIM. In addition, we demonstrated that Rab7 and RILP, but not Rab5, localizes to LDs of infected macrophages and observed the presence of Rab7 at the site of interaction with an infected phagosome. Moreover, treatment of macrophages with the Rab7 inhibitor CID1067700 significantly inhibited the association between LDs and LAM-coated beads. Altogether, our data demonstrate that LD-phagosome interactions are controlled by mycobacterial cell wall components and Rab7, which enables the exchange of contents between LDs and phagosomes and may represent a fundamental aspect of bacterial pathogenesis and immune evasion.  相似文献   

17.
NOD2/CARD15 mediates innate immune responses to mycobacterial infection. However, its role in the regulation of adaptive immunity has remained unknown. In this study, we examined host defense, T cell responses, and tissue pathology in two models of pulmonary mycobacterial infection, using wild-type and Nod2-deficient mice. During the early phase of aerosol infection with Mycobacterium tuberculosis, Nod2(-/-) mice had similar bacterial counts but reduced inflammatory response on histopathology at 4 and 8 wk postchallenge compared with wild-type animals. These findings were confirmed upon intratracheal infection of mice with attenuated Mycobacterium bovis bacillus Calmette-Guérin. Analysis of the lungs 4 wk after bacillus Calmette-Guérin infection demonstrated that Nod2(-/-) mice had decreased production of type 1 cytokines and reduced recruitment of CD8(+) and CD4(+) T cells. Ag-specific T cell responses in both the spleens and thoracic lymph nodes were diminished in Nod2(-/-) mice, indicating impaired adaptive antimycobacterial immunity. The immune regulatory role of NOD2 was not restricted to the lung since Nod2 disruption also led to reduced type 1 T cell activation following i.m. bacillus Calmette-Guérin infection. To determine the importance of diminished innate and adaptive immunity, we measured bacterial burden 6 mo after aerosol infection with M. tuberculosis and followed a second infected group for assessment of survival. Nod2(-/-) mice had a higher bacterial burden in the lungs 6 mo after infection and succumbed sooner than did wild-type controls. Taken together, these data indicate that NOD2 mediates resistance to mycobacterial infection via both innate and adaptive immunity.  相似文献   

18.
Dendritic cells (DCs) are likely to play a key role in immunity against Mycobacterium tuberculosis, but the fate of the bacterium in these cells is still unknown. Here we report that, unlike macrophages (Mphis), human monocyte-derived DCs are not permissive for the growth of virulent M. tuberculosis H37Rv. Mycobacterial vacuoles are neither acidic nor fused with host cell lysosomes in DCs, in a mode similar to that seen in mycobacterial infection of Mphis. However, uptake of the fluid phase marker dextran, and of transferrin, as well as accumulation of the recycling endosome-specific small GTPase Rab11 onto the mycobacterial phagosome, are almost abolished in infected DCs, but not in Mphis. Moreover, communication between mycobacterial phagosomes and the host-cell biosynthetic pathway is impaired, given that <10% of M. tuberculosis vacuoles in DCs stained for the endoplasmic reticulum-specific proteins Grp78/BiP and calnexin. This correlates with the absence of the fusion factor N-ethylmaleimide-sensitive factor onto the vacuolar membrane in this cell type. Trafficking between the vacuoles and the host cell recycling and biosynthetic pathways is strikingly reduced in DCs, which is likely to impair access of intracellular mycobacteria to essential nutrients and may thus explain the absence of mycobacterial growth in this cell type. This unique location of M. tuberculosis in DCs is compatible with their T lymphocyte-stimulating functions, because M. tuberculosis-infected DCs have the ability to specifically induce cytokine production by autologous T lymphocytes from presensitized individuals. DCs have evolved unique subcellular trafficking mechanisms to achieve their Ag-presenting functions when infected by intracellular mycobacteria.  相似文献   

19.
Gupta S  Chatterji D 《IUBMB life》2005,57(3):149-159
Mycobacterium tuberculosis is a successful pathogen that overcomes numerous challenges presented by the immune system of the host. This bacterium usually establishes a chronic infection in the host where it may silently persist inside a granuloma until, a failure in host defenses, leads to manifestation of the disease. None of the conventional anti-tuberculosis drugs are able to target these persisting bacilli. Development of drugs against such persisting bacilli is a constant challenge since the physiology of these dormant bacteria is still not understood at the molecular level. Some evidence suggests that the in vivo environment encountered by the persisting bacteria is anoxic and nutritionally starved. Based on these assumptions, anaerobic and starved cultures are used as models to study the molecular basis of dormancy. This review outlines the problem of persistence of M. tuberculosis and the various in vitro models used to study mycobacterial latency. The basis of selecting the nutritional starvation model has been outlined here. Also, the choice of M. smegmatis as a model suitable for studying mycobacterial latency is discussed. Lastly, general issues related to oxidative stress and bacterial responses to it have been elaborated. We have also discussed general control of OxyR-mediated regulation and emphasized the processes which manifest in the absence of functional OxyR in the bacteria. Lastly, a new class of protein called Dps has been reviewed for its important role in protecting DNA under stress.  相似文献   

20.
Identification of the novel PE multigene family was an unexpected finding of the genomic sequencing of Mycobacterium tuberculosis. Presently, the biological role of the PE and PE_PGRS proteins encoded by this unique family of mycobacterial genes remains unknown. In this report, a representative PE_PGRS gene (Rv1818c/PE_PGRS33) was selected to investigate the role of these proteins. Cell fractionation studies and fluorescence analysis of recombinant strains of Mycobacterium smegmatis and M. tuberculosis expressing green fluorescent protein (GFP)-tagged proteins indicated that the Rv1818c gene product localized in the mycobacterial cell wall, mostly at the bacterial cell poles, where it is exposed to the extracellular milieu. Further analysis of this PE_PGRS protein showed that the PE domain is necessary for subcellular localization. In addition, the PGRS domain, but not PE, affects bacterial shape and colony morphology when Rv1818c is overexpressed in M. smegmatis and M. tuberculosis. Taken together, the results indicate that PE_PGRS and PE proteins can be associated with the mycobacterial cell wall and influence cellular structure as well as the formation of mycobacterial colonies. Regulated expression of PE genes could have implications for the survival and pathogenesis of mycobacteria within the human host and in other environmental niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号