首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Stem cell transplantation is a promising method for the treatment of chronic obstructive pulmonary disease (COPD), and mesenchymal stem cells (MSCs) have clinical potential for lung repair/regeneration. However, the rates of engraftment and differentiation are generally low following MSC therapy for lung injury. In previous studies, we constructed a pulmonary surfactant-associated protein A (SPA) suicide gene system, rAAV-SPA-TK, which induced apoptosis in alveolar epithelial type II (AT II) cells and vacated the AT II cell niche. We hypothesized that this system would increase the rates of MSC engraftment and repair in COPD rats.

Methods

The MSC engraftment rate and morphometric changes in lung tissue in vivo were investigated by in situ hybridization, hematoxylin and eosin staining, Masson’s trichrome staining, immunohistochemistry, and real-time PCR. The expression of hypoxia inducible factor (HIF-1α) and stromal cell-derived factor-1 (SDF-1), and relationship between HIF-1α and SDF-1 in a hypoxic cell model were analyzed by real-time PCR, western blotting, and enzyme-linked immunosorbent assay.

Results

rAAV-SPA-TK transfection increased the recruitment of MSCs but induced pulmonary fibrosis in COPD rats. HIF-1α and SDF-1 expression were enhanced after rAAV-SPA-TK transfection. Hypoxia increased the expression of HIF-1α and SDF-1 in the hypoxic cell model, and SDF-1 expression was augmented by HIF-1α under hypoxic conditions.

Conclusions

Vacant AT II cell niches increase the homing and recruitment of MSCs to the lung in COPD rats. MSCs play an important role in lung repair and promote collagen fiber deposition after induction of secondary damage in AT II cells by rAAV-SPA-TK, which involves HIF-1α and SDF-1 signaling.  相似文献   

2.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality, and have no specific therapy. Keratinocyte growth factor (KGF) is a critical factor for pulmonary epithelial repair and acts via the stimulation of epithelial cell proliferation. Mesenchymal stem cells (MSCs) have been proved as good therapeutic vectors. Thus, we hypothesized that MSC-based KGF gene therapy would have beneficial effects on lipopolysaccharide(LPS)-induced lung injury. After two hours of intratracheal LPS administration to induce lung injury, mice received saline, MSCs alone, empty vector-engineered MSCs (MSCs-vec) or KGF-engineered MSCs (MSCs-kgf) via the tail vein. The MSCs-kgf could be detected in the recipient lungs and the level of KGF expression significantly increased in the MSCs-kgf mice. The MSC-mediated administration of KGF not only improved pulmonary microvascular permeability but also mediated a down-regulation of proinflammatory responses (reducing IL-1β and TNF-α) and an up-regulation of anti-inflammatory responses (increasing cytokine IL-10). Furthermore, the total severity scores of lung injury were significantly reduced in the MSCs-kgf group compared with the other three groups. The underlying mechanism of the protective effect of KGF on ALI may be attributed to the promotion of type II lung epithelial cell proliferation and the enhancement of surfactant synthesis. These findings suggest that MSCs-based KGF gene therapy may be a promising strategy for ALI treatment.  相似文献   

3.
Bone morphogenic protein (BMP)-7 is a member of the BMP family which are structurally and functionally related, and part of the TGFβ super family of growth factors. BMP-7 has been reported to inhibit renal fibrosis and TGFβ1-induced epithelial-mesenchymal transition (EMT), in part through negative interactions with TGFβ1 induced Smad 2/3 activation. We utilized in vivo bleomycin-induced fibrosis models in the skin and lung to determine the potential therapeutic effect of BMP-7. We then determined the effect of BMP-7 on TGFβ1-induced EMT in lung epithelial cells and collagen production by human lung fibroblasts. We show that BMP-7 did not affect bleomycin-induced fibrosis in either the lung or skin in vivo; had no effect on expression of pro-fibrotic genes by human lung fibroblasts, either at rest or following exposure to TGFβ1; and did not modulate TGFβ1 -induced EMT in human lung epithelial cells. Taken together our data indicates that BMP-7 has no anti-fibrotic effect in lung or skin fibrosis either in vivo or in vitro. This suggests that the therapeutic options for BMP-7 may be confined to the renal compartment.  相似文献   

4.
Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.  相似文献   

5.
6.
Mesenchymal stem cell (MSC) transplantation alone may be insufficient for treatment of liver fibrosis because of complicated histopathological changes in the liver. Given that miR‐122 plays an essential role in liver fibrosis by negatively regulating the proliferation and transactivation of hepatic stellate cells (HSCs), this study investigated whether miR‐122 modification can improve the therapeutic efficacy of adipose tissue‐derived MSCs in treating liver fibrosis. MiR‐122‐modified AMSCs (AMSC‐122) were constructed through lentivirus‐mediated transfer of pre‐miR‐122. MiR‐122‐modified AMSCs expressed high level of miR‐122, while they retained their phenotype and differentiation potential as naïve AMSCs. AMSC‐122 more effectively suppressed the proliferation of and collagen maturation in HSCs than scramble miRNA‐modified AMSCs. In addition, AMSC‐derived exosomes mediated the miR‐122 communication between AMSCs and HSCs, further affecting the expression levels of miR‐122 target genes, such as insulin‐like growth factor receptor 1 (IGF1R), Cyclin G(1) (CCNG1) and prolyl‐4‐hydroxylase α1 (P4HA1), which are involved in proliferation of and collagen maturation in HSCs. Moreover, miR‐122 modification enhanced the therapeutic efficacy of AMSCs in the treatment of carbon tetrachloride (CCl4)‐induced liver fibrosis by suppressing the activation of HSCs and alleviating collagen deposition. Results demonstrate that miR‐122 modification improves the therapeutic efficacy of AMSCs through exosome‐mediated miR‐122 communication; thus, miR‐122 modification is a new potential strategy for treatment of liver fibrosis.  相似文献   

7.
8.
Epithelia play a key role as protective barriers, and mechanisms of repair are crucial for restoring epithelial barrier integrity, especially in the lung. Cell spreading and migration are the first steps of reepithelialization. Keratinocyte growth factor (KGF) plays a key role in lung epithelial repair and protects against various injuries. We hypothesized that KGF may protect the lung not only by inducing proliferation but also by promoting epithelial repair via enhanced epithelial cell migration. In an in vitro wound-healing model, we found that KGF enhanced wound closure by 33%. KGF acted primarily by inducing lamellipodia emission (73.2 +/- 3.9% of KGF-treated cells had lamellipodia vs 61.3 +/- 3.4% of control cells) and increasing their relative surface area (59 +/- 2.7% with KGF vs 48 +/- 2.0% in controls). KGF reduced cytoskeleton stiffness as measured by magnetic twisting cytometry and increased cell motility (5.8 +/- 0.42 microm/h with KGF vs 3.7 +/- 0.41 microm/h in controls). KGF-increased cell motility was associated with increased fibronectin deposition during wound closure and with fibronectin reorganization into fibrils at the rear of the cells. Taken together, our findings strongly suggest that KGF may promote epithelial repair through several mechanisms involved in cell migration.  相似文献   

9.
Background and aimsWe have demonstrated recently that transplantation of placental membrane-derived cells reduces bleomycin-induced lung fibrosis in mice, despite a limited presence of transplanted cells in host lungs. Because placenta-derived cells are known to release factors with potential immunomodulatory and trophic activities, we hypothesized that transplanted cells may promote lung tissue repair via paracrine-acting molecules. To test this hypothesis, we examined whether administration of conditioned medium (CM) generated from human amniotic mesenchymal tissue cells (AMTC) was able to reduce lung fibrosis in this same animal model.MethodsBleomycin-challenged mice were either treated with AMTC-CM or control medium, or were left untreated (Bleo group). After 9 and 14 days, the distribution and severity of lung fibrosis were assessed histologically with a scoring system. Collagen deposition was also evaluated by quantitative image analysis.ResultsAt day 14, lung fibrosis scores in AMTC-CM-treated mice were significantly lower (P < 0.05) compared with mice of the Bleo group, in terms of fibrosis distribution [1.0 (interquartile range, IQR 0.9) versus 3.0 (IQR 1.8)], fibroblast proliferation [0.8 (IQR 0.4) versus 1.6 (IQR 1.0)], collagen deposition [1.4 (IQR 0.5) versus 2.0 (IQR 1.2)] and alveolar obliteration [2.3 (IQR 0.8) versus 3.2 (IQR 0.5)]. No differences were observed between mice of the Bleo group and mice treated with control medium. Quantitative analysis of collagen deposition confirmed these findings. Importantly, AMTC-CM treatment significantly reduced the fibrosis progression between the two observation time-points.ConclusionsThis pilot study supports the notion that AMTC exert anti-fibrotic effects through release of yet unknown soluble factors.  相似文献   

10.
Pretreatment with keratinocyte growth factor (KGF) ameliorates experimentally induced acute lung injury in rats. Although alveolar epithelial type II cell hyperplasia probably contributes, the mechanisms underlying KGF's protective effect remain incompletely described. Therefore, we tested the hypothesis that KGF given to rats in vivo would enhance alveolar epithelial repair in vitro by nonproliferative mechanisms. After intratracheal instillation (48 h) of KGF (5 mg/kg), alveolar epithelial type II cells were isolated for in vitro alveolar epithelial repair studies. KGF-treated cells had markedly increased epithelial repair (96 +/- 22%) compared with control cells (P < 0.001). KGF-treated cells had increased cell spreading and migration at the wound edge but no increase in in vitro proliferation compared with control cells. KGF-treated cells were more adherent to extracellular matrix proteins and polystyrene. Inhibition of the epidermal growth factor (EGF) receptor with tyrosine kinase inhibitors abolished the KGF effect on epithelial repair. In conclusion, in vivo administration of KGF augments the epithelial repair rate of alveolar epithelial cells by altering cell adherence, spreading, and migration and through stimulation of the EGF receptor.  相似文献   

11.
MethodsIn vivo, we induced liver fibrosis by bile duct ligation (BDL), chronic carbon tetrachloride (CCl4), and chronic thioacetamide (TAA) administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs) to assess the effect of brivanib on stellate cell proliferation and activation.ResultsAfter in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF), VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor.ConclusionBrivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer.  相似文献   

12.
Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.  相似文献   

13.
The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2–4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.  相似文献   

14.
Alveolar epithelial cells are known to be present at the primary site of lung damage in pulmonary fibrosis. Apoptosis has been implicated as being involved in epithelial cell damage and pulmonary fibrosis. Because the cyclin-dependent kinase inhibitor p21 induces G1 arrest and DNA repair and because it also prevents apoptosis in some cells, we hypothesized that p21 gene transfer may attenuate bleomycin-induced pulmonary fibrosis in mice, the pathogenesis of which likely involves epithelial cell apoptosis. Human p21 protein was expressed in mouse alveolar epithelial cells at 1-7 days in vitro and was detected predominantly in lung epithelial cells at 1-7 days in vivo after adenoviral transfer of the human p21 gene. Inflammatory cell infiltration and fibrosis had already begun at 7 days in this model. Adenoviral transfer of the human p21 gene at 7 days after intratracheal instillation of bleomycin led to a decrease in the number of apoptotic cells, lung inflammation, and fibrosis at 14 days. Therefore, the forced expression of p21 exerted both anti-apoptotic and anti-fibrotic effects, which would facilitate the ultimate goal of treatment for pulmonary fibrosis.  相似文献   

15.

Background

Reciprocal interactions between lung mesenchymal and epithelial cells play essential roles in lung organogenesis and homeostasis. Although the molecular markers and related animal models that target lung epithelial cells are relatively well studied, molecular markers of lung mesenchymal cells and the genetic tools to target and/or manipulate gene expression in a lung mesenchyme-specific manner are not available, which becomes a critical barrier to the study of lung mesenchymal biology and the related pulmonary diseases.

Results

We have identified a mouse Tbx4 gene enhancer that contains conserved DNA sequences across many vertebrate species with lung or lung-like gas exchange organ. We then generate a mouse line to express rtTA/LacZ under the control of the Tbx4 lung enhancer, and therefore a Tet-On inducible transgenic system to target lung mesenchymal cells at different developmental stages. By combining a Tbx4-rtTA driven Tet-On inducible Cre expression mouse line with a Cre reporter mouse line, the spatial-temporal patterns of Tbx4 lung enhancer targeted lung mesenchymal cells were defined. Pulmonary endothelial cells and vascular smooth muscle cells were targeted by the Tbx4-rtTA driver line prior to E11.5 and E15.5, respectively, while other subtypes of lung mesenchymal cells including airway smooth muscle cells, fibroblasts, pericytes could be targeted during the entire developmental stage.

Conclusions

Developmental lung mesenchymal cells can be specifically marked by Tbx4 lung enhancer activity. With our newly created Tbx4 lung enhancer-driven Tet-On inducible system, lung mesenchymal cells can be specifically and differentially targeted in vivo for the first time by controlling the doxycycline induction time window. This novel system provides a unique tool to study lung mesenchymal cell lineages and gene functions in lung mesenchymal development, injury repair, and regeneration in mice.
  相似文献   

16.
Collagen deposition is a key process during idiopathic pulmonary fibrosis; however, little is known about the dynamics of collagen formation during disease development. Tissue samples of early stages of human disease are not readily available and it is difficult to identify changes in collagen content, since standard collagen analyses do not distinguish between ‘old’ and ‘new’ collagen. Therefore, the current study aimed to (i) investigate the dynamics of new collagen formation in mice using bleomycin-induced lung fibrosis in which newly synthesized collagen was labeled with deuterated water and (ii) use this information to identify genes and processes correlated to new collagen formation.Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at 1 to 5 weeks after fibrosis induction. Collagen synthesized during the week before sacrifice was labeled with deuterium by providing mice with deuterated drinking water. After sacrifice, we collected lung tissue for microarray analysis, determination of new collagen formation, and histology. Furthermore, we measured in vitro the expression of selected genes after transforming growth factor (TGF) β1-induced myofibroblast differentiation.Deuterated water labeling showed a strong increase in new collagen formation already during the first week after fibrosis induction and a complete return to baseline at five weeks. Correlation of new collagen formation data with gene expression data allowed us to create a gene expression signature of fibrosis within the lung and revealed fibrosis-specific processes, among which proliferation. This was confirmed by measuring cell proliferation and collagen synthesis simultaneously using deuterated water incorporation in a separate experiment. Furthermore, new collagen formation strongly correlated with gene expression of e.g. elastin, Wnt-1 inducible signaling pathway protein 1, tenascin C, lysyl oxidase, and type V collagen. Gene expression of these genes was upregulated in vitro in fibroblasts stimulated with TGFβ1.Together, these data demonstrate, using a novel combination of technologies, that the core process of fibrosis, i.e. the formation of new collagen, correlates not only with a wide range of genes involved in general extracellular matrix production and modification but also with cell proliferation. The observation that the large majority of the genes which correlated with new collagen formation also were upregulated during TGFβ1-induced myofibroblast differentiation provides further evidence for their involvement in fibrosis.  相似文献   

17.
BackgroundIdiopathic pulmonary fibrosis is a chronic, progressive, fibrotic disease. Although the pathogenesis remains unclear, the effect of endoplasmic reticulum (ER) stress in type II alveolar epithelial cells (AEC IIs) is increasingly thought to be a critical mechanism.PurposeWe investigated the effects of citrus alkaline extracts (CAE) on AEC IIs and elucidated the underlying mechanism for their possible use in ameliorating pulmonary fibrosis (PF).MethodsA bleomycin-induced mouse model of PF, and an in vitro tunicamycin (TM) -induced ER stress model in A549 cells were successfully established. Accumulation of collagen in lung tissues in vivo was assessed using histological analysis and western blotting. The expression levels of the ER-stress marker BiP and other related proteins were assessed by western blotting and immunofluorescence staining. Mitochondrial membrane potential was assessed to evaluate mitochondrial homeostasis.ResultsCAE mitigated collagen deposition to ameliorate PF in vivo. CAE suppressed the bleomycin or TM-induced increases in ER-stress biomarker, BiP, and PERK pathway proteins, resulting in a decrease in ER stress in mouse lung tissues and A549 cells, respectively. Additionally, CAE treatment suppressed the bleomycin or TM-induced increase in the ER-stress downstream proteins, activating ATF3 and increased the levels of PINK1 in AEC IIs, both in vivo and in vitro. The reduced mitochondrial homeostasis induced by TM was restored by CAE-treatment in A549 cells. Furthermore, conditioned media from TM-treated A549 cells increased collagen deposition in MRC5 cells mainly via TGF-β1. The increased collagen deposition was not seen using conditioned media from CAE-treated A549 cells.ConclusionThese results provide novel insights into the potential mechanism of CAE in inhibiting ER stress in AEC IIs, and suggests that it has great potential to ameliorate PF via the ATF3/PINK1 pathway.  相似文献   

18.
Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal stem cells directly replace fibrosis with normal lung cells using IPF model mice. As results, transplanted MSC successfully integrated and differentiated into type II lung cell which express surfactant protein. In the other hand, we examine the therapeutic effects of microvesicle treatment, which were released from mesenchymal stem cells. Though the therapeutic effects of MV treatment is less than that of MSC treatment, MV treat-ment meaningfully reduced the symptom of IPF, such as collagen deposition and inflammation. These data suggest that stem cell transplantation may be an effective strategy for the treatment of pulmonary fibrosis via replacement and cytoprotective effect of microvesicle released from MSCs.  相似文献   

19.

Background

Mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) have been studied for damaged liver repair; however, the conclusions drawn regarding their homing capacity to the injured liver are conflicting. Besides, the relative utility and synergistic effects of these two cell types on the injured liver remain unclear.

Methodology/Principal Findings

MSCs, HSCs and the combination of both cells were obtained from the bone marrow of male mice expressing enhanced green fluorescent protein(EGFP)and injected into the female mice with or without liver fibrosis. The distribution of the stem cells, survival rates, liver function, hepatocyte regeneration, growth factors and cytokines of the recipient mice were analyzed. We found that the liver content of the EGFP-donor cells was significantly higher in the MSCs group than in the HSCs or MSCs+HSCs group. The survival rate for the MSCs group was significantly higher than that of the HSCs or MSCs+HSCs group; all surpassed the control group. After MSC-transplantation, the injured livers were maximally restored, with less collagen than the controls. The fibrotic areas had decreased to a lesser extent in the mice transplanted with HSCs or MSCs+HSCs. Compared with mice in the HSCs group, the mice that received MSCs had better improved liver function. MSCs exhibited more remarkable paracrine effects and immunomodulatory properties on hepatic stellate cells and native hepatocytes in the treatment of the liver pathology. Synergistic actions of MSCs and HSCs were most likely not observed because the stem cells in liver were detected mostly as single cells, and single MSCs are insufficient to provide a beneficial niche for HSCs.

Conclusions/Significance

MSCs exhibited a greater homing capability for the injured liver and modulated fibrosis and inflammation more effectively than did HSCs. Synergistic effects of MSCs and HSCs were not observed in liver injury.  相似文献   

20.
Osteopontin is a multifunctional matricellular protein abundantly expressed during inflammation and repair. Osteopontin deficiency is associated with abnormal wound repair characterized by aberrant collagen fibrillogenesis in the heart and skin. Recent gene microarray studies found that osteopontin is abundantly expressed in both human and mouse lung fibrosis. Macrophages and T cells are known to be major sources of osteopontin. During lung fibrosis, however, osteopontin expression continues to increase when inflammation has receded, suggesting alternative sources of ostepontin during this response. In this study, we demonstrate immunoreactivity for osteopontin in lung epithelial and inflammatory cells in human usual interstitial pneumonitis and murine bleomycin-induced lung fibrosis. After treatment with bleomycin, osteopontin-null mice develop lung fibrosis characterized by dilated distal air spaces and reduced type I collagen expression compared with wild-type controls. There is also a significant decrease in levels of active transforming growth factor-beta(1) and matrix metalloproteinase-2 in osteopontin null mice. Type III collagen expression and total collagenase activity are similar in both groups. These results demonstrate that osteopontin expression is associated with important fibrogenic signals in the lung and that the epithelium may be an important source of osteopontin during lung fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号