首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human fecal matter contains a large number of viruses, and current bacterial indicators used for monitoring water quality do not correlate with the presence of pathogenic viruses. Adenoviruses and enteroviruses have often been used to identify fecal pollution in the environment; however, other viruses shed in fecal matter may more accurately detect fecal pollution. The purpose of this study was to develop a baseline understanding of the types of viruses found in raw sewage. PCR was used to detect adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses in raw sewage collected throughout the United States. Adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples and 25% and 33% of final effluent samples, respectively. Enteroviruses and noroviruses were detected in 75% and 58% of raw sewage samples, respectively, and both viral groups were found in 8% of final effluent samples. This study showed that adenoviruses, enteroviruses, noroviruses, and picobirnaviruses are widespread in raw sewage. Since adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples, they are potential markers of fecal contamination. Additionally, this research uncovered previously unknown sequence diversity in human picobirnaviruses. This baseline understanding of viruses in raw sewage will enable educated decisions to be made regarding the use of different viruses in water quality assessments.Millions of viruses and bacteria are excreted in human fecal matter (5, 17, 82), and current methods of sewage treatment do not always effectively remove these organisms (74, 76-78). The majority of treated wastewater, as well as untreated sewage, drains into the marine environment (1) and has the potential to threaten environmental (e.g., nutrients and chemicals) (45) and public (e.g., pathogen exposure via swimming and seafood consumption) (1, 24, 28, 29, 33, 44, 57, 63) health. Currently, the U.S. Environmental Protection Agency (EPA) mandates the use of bacterial indicators such as fecal coliforms and enterococci to assess water quality (75). Although monitoring of these bacteria is simple and inexpensive, it has been shown that fecal-associated bacteria are not ideal indicators of fecal pollution.Since fecal-associated bacteria are able to live in sediments in the absence of fecal pollution (18, 32, 55), their resuspension into the water column can result in false-positive results and mask correlations between their concentrations and the extent of recent fecal pollution. Another unfavorable characteristic of current bacterial indicators is their inability to predict or correlate with the presence of pathogenic viruses (25, 40, 41, 64, 80). Human-pathogenic viruses associated with feces are generally more robust than enteric bacteria and are not as easily eliminated by current methods of wastewater treatment (43, 80). For example, adenoviruses are more resilient to tertiary wastewater treatment and UV disinfection than are bacterial indicators of fecal pollution (74). Since bacterial indicators cannot accurately depict the risks to human health from fecal pollution, several studies have proposed the use of a viral indicator of wastewater contamination (35, 41, 61).While it is impractical to monitor the presence of all viral pathogens related to wastewater pollution, the development of an accurate viral indicator of sewage contamination is needed for enhanced water quality monitoring. Enteric viruses (including viruses belonging to the families Adenoviridae, Caliciviridae, Picornaviridae, and Reoviridae) are transmitted via the fecal-oral route and are known to be abundant in raw sewage. These viruses have been used to identify fecal pollution in coastal environments throughout the world (27, 35, 39, 40, 48, 50, 56, 57, 63, 64, 67-69, 71, 80). To determine which viruses are effective indicators of fecal pollution, it is first necessary to establish a broad, baseline understanding of the many diverse groups of eukaryotic viruses in raw sewage. Several studies have identified adenoviruses, noroviruses, reoviruses, rotaviruses, and other enteroviruses (e.g., polioviruses, coxsackie viruses, and echoviruses) in raw sewage in Australia, Europe, and South Africa (30, 47, 58, 76-78). However, no broad baseline data on the presence of eukaryotic viruses in raw sewage in the United States currently exist.This study determined the presence of 10 viral groups (adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses) in raw sewage samples collected throughout the United States. All viral groups that were detected in raw sewage were then examined further to determine if they were also present in final treated wastewater effluent. These 10 viral groups were chosen because of their potential to be transmitted via the fecal-oral route, suggesting that they might be found in raw sewage. Many of these viruses (excluding adenoviruses, enteroviruses, noroviruses, reoviruses, and rotaviruses) have not been studied in sewage despite their likely presence. Picobirnaviruses have been detected in individual fecal samples (12, 70, 79, 82); however, their presence has never been analyzed in collective waste, nor have they been proposed to be potential markers of fecal pollution. This study identified potential viral indicators of fecal pollution and will have important applications to water quality monitoring programs throughout the country.  相似文献   

2.
A number of chemical, microbial, and eukaryotic indicators have been proposed as indicators of fecal pollution sources in water bodies. No single one of the indicators tested to date has been able to determine the source of fecal pollution in water. However, the combined use of different indicators has been demonstrated to be the best way of defining predictive models suitable for determining fecal pollution sources. Molecular methods are promising tools that could complement standard microbiological water analysis. In this study, the feasibility of some proposed molecular indicators for microbial source tracking (MST) was compared (names of markers are in parentheses): host-specific Bacteroidetes (HF134, HF183, CF128, and CF193), Bifidobacterium adolescentis (ADO), Bifidobacterium dentium (DEN), the gene esp of Enterococcus faecium, and host-specific mitochondrial DNA associated with humans, cattle, and pigs (Humito, Bomito, and Pomito, respectively). None of the individual molecular markers tested enabled 100% source identification. They should be combined with other markers to raise sensitivity and specificity and increase the number of sources that are identified. MST predictive models using only these molecular markers were developed. The models were evaluated by considering the lowest number of molecular indicators needed to obtain the highest rate of identification of fecal sources. The combined use of three molecular markers (ADO, Bomito, and Pomito) enabled correct identification of 75.7% of the samples, with differentiation between human, swine, bovine, and poultry sources. Discrimination between human and nonhuman fecal pollution was possible using two markers: ADO and Pomito (84.6% correct identification). The percentage of correct identification increased with the number of markers analyzed. The best predictive model for distinguishing human from nonhuman fecal sources was based on 5 molecular markers (HF134, ADO, DEN, Bomito, and Pomito) and provided 90.1% correct classification.Fecal pollution represents a serious public health problem. Pathogens from infected animals and humans can be introduced into the environment through feces and cause health risks, environmental degradation, and economic losses. In recent years, water authorities'' environmental and sanitary regulations have focused on the total fecal load that can be held by a water body and on determining the source of fecal pollution. Accurate and reliable methods for detecting fecal pollution are needed to reduce its occurrence, prevent future spills, decrease economic losses, and take legal measures.Total coliforms, fecal coliforms, enterococci, and Escherichia coli have traditionally been used as microbial fecal indicators in water. These microorganisms are easy to enumerate by cultivation methods. However, they do not identify the source of fecal pollution.Fecal pollution of surface waters comes from point or diffuse sources, including municipal sewage, slaughterhouse wastewater, manure and biosolid disposal, wildlife, and undetermined runoff. Reliable microbial source tracking (MST) methods can provide efficient and rapid fecal source determination and facilitate cost-effective remediation. In recent years, various MST methods have been developed that are based on library-dependent or -independent methods and analyze phenotypic and/or genomic characteristics (39, 54, 55). Library-dependent methods (LDM) require a comprehensive library of isolates from known sources. Isolates from unknown sources are classified by correspondence with those from the library (57). LDM include antibiotic resistance analysis, carbon source utilization, repetitive PCR, and ribotyping. However, the geographic and temporal stability and the numerical methods used for these LDM have been questioned (26, 44). Some cultivation-based methods have already been described, such as the detection of specific enterotoxins of E. coli strains (30, 31, 43), the differentiation and enumeration of sorbitol-fermenting bifidobacteria (10, 37), and the enumeration of phages that infect host-specific Bacteroides spp. (8, 45). Cultivation methods detect only viable bacteria, may give a biased picture of the populations, and thus misrepresent the bacterial diversity (60). The use of PCR-based methods allows the detection of bacteria that are difficult to grow, such as anaerobes, including the genera Bacteroides and Bifidobacterium (5, 9, 14, 63), Rhodococcus coprophilus (51), methanogenic archaeal bacteria (59), and viruses (27). More detailed information on MST methods can be found in several technical reviews (8, 17, 54, 55, 57).Bifidobacterium and Bacteroides have been proposed as possible source-tracking indicators for waterborne fecal pathogens (3, 18, 33, 37, 41, 48). Several Bifidobacterium species are thought to be human host specific, such as Bifidobacterium adolescentis, Bifidobacterium dentium, and Bifidobacterium longum (58). Meanwhile, others have been linked to certain domestic animals (20, 61). A multiplex PCR has been developed to detect human fecal pollution by analyzing the presence of B. dentium and B. adolescentis in water (9). Bacteroidetes markers are mainly based on the definition of host-specific oligonucleotides (for example, to detect human, ruminant, and swine pollution) that are associated with some uncultured populations (5, 15, 32, 46, 47). Geographical differences in host specificity have been observed when these markers are applied in different world regions (1, 2, 11, 21, 22, 24, 40, 42). The detection of the gene esp, which encodes an enterococcal surface protein, has also been proposed as an indicator of human fecal pollution (53). This gene has been associated with the virulence, colonization and biofilm formation found in Enterococcus faecium and Enterococcus faecalis (25). However, recent studies have indicated that the detection of esp may not always be related to human fecal pollution (12, 35). Other MST indicators have been developed for eukaryotic molecular markers. Martellini et al. (38) designed a PCR protocol that targets eukaryotic genetic markers as a fecal source tracking method for differentiating human, porcine, bovine, and ovine fecal pollution. This protocol consists of nested PCRs, based on the amplification of mitochondrial DNA from the host cells. Multiplex and real-time PCR methods for mitochondrial MST indicators have also been developed (4, 13, 52).It has been shown that no single microbial or chemical MST indicator can determine the source of fecal pollution. Therefore, a selection of indicators is required (7, 8, 22, 24). Predictive models to distinguish between human and nonhuman pollution have been developed by combining indicators. These models have achieved a 100% likelihood of success (7, 24, 56). However, they are mostly based on culture-dependent methods, and discernment among different animal sources should be attained. In this study, microbial and eukaryotic molecular markers were compared for use as MST indicators. Potential combinations were also evaluated. Finally, MST predictive models using only these molecular markers were developed using a number of established statistical methods. The models were evaluated by considering the lowest number of molecular indicators needed to obtain the highest rate of discrimination among fecal sources.  相似文献   

3.
Methods for rapid detection and quantification of infectious viruses in the environment are urgently needed for public health protection. A fluorescence-activated cell-sorting (FACS) assay was developed to detect infectious adenoviruses (Ads) based on the expression of viral protein during replication in cells. The assay was first developed using recombinant Ad serotype 5 (rAd5) with the E1A gene replaced by a green fluorescent protein (GFP) gene. Cells infected with rAd5 express GFP, which is captured and quantified by FACS. The results showed that rAd5 can be detected at concentrations of 1 to 104 PFU per assay within 3 days, demonstrating a linear correlation between the viral concentration and the number of GFP-positive cells with an r2 value of >0.9. Following the same concept, FACS assays using fluorescently labeled antibodies specific to the E1A and hexon proteins, respectively, were developed. Assays targeting hexon showed greater sensitivity than assays targeting E1A. The results demonstrated that as little as 1 PFU Ads was detected by FACS within 3 days based on hexon protein, with an r2 value greater than 0.9 over a 4-log concentration range. Application of this method to environmental samples indicated positive detection of infectious Ads in 50% of primary sewage samples and 33% of secondary treated sewage samples, but none were found in 12 seawater samples. The infectious Ads ranged in quantity between 10 and 165 PFU/100 ml of sewage samples. The results indicate that the FACS assay is a rapid quantification tool for detecting infectious Ads in environmental samples and also represents a considerable advancement for rapid environmental monitoring of infectious viruses.Waterborne viral infection is one of the most important causes of human morbidity in the world. There are hundreds of different types of human viruses present in human sewage, which, if improperly treated, may become the source of contamination in drinking and recreational waters (6, 12, 19). Furthermore, as water scarcity intensifies in the nation, so has consideration of wastewater reuse as a valid and essential alternative for resolving water shortages (31).Currently, routine viral monitoring is not required for drinking or recreational waters, nor is it required for wastewater that is discharged into the environment. This lack of a monitoring effort is due largely to the lack of methods that can rapidly and sensitively detect infectious viruses in environmental samples. In the past 20 years, tremendous progress has been made in detection of viruses in the environment based on molecular technology (32, 33, 35). PCR and quantitative real-time PCR (qPCR) methods have improved both the speed and sensitivity of viral detection compared with detection by the traditional tissue culture method (2, 11, 17, 18). However, they provide little information on viral infectivity, which is crucial for human health risk assessment (22-24, 35). Our previous work using a real-time PCR assay to detect human adenoviruses (Ads) in sewage could not differentiate the infectious viruses in the secondary treated sewage from those killed by chlorination disinfection (15). In this research, we pursued an innovative approach to detecting infectious viruses in water using fluorescence-activated cell sorting (FACS). This method is rapid and sensitive, with an established record in microbiological research (29, 34, 39).FACS is a specialized type of flow cytometry which provides a method for counting and sorting a heterogeneous mixture of biological cells into two or more kinds, one cell at a time, based upon the specific light-scattering and fluorescent characteristics of each cell (4, 25, 34, 38). It is a useful method since it provides fast and quantitative recording of fluorescent signals from individual cells (14, 16, 34, 47). The FACS viral assay is based on the expression of viral protein inside the recipient cell during viral replication (16). Specific antibody labeled with fluorescence is bound to the target viral protein, which results in fluorescence emission from infected cells. Viral particles outside the cell will not be captured, because the size of virus is below the detection limit of flow cytometry. Therefore, detection of cells, which can be captured with fluorescently labeled viral antibody, is a definitive indication of the presence of infectious virus.This research used human Ads as the target for development of the FACS method. The rationale for this choice is as follows. (i) Ads are important human pathogens that may be transmitted by water consumption and water spray (aerosols) (26, 32). The health hazard associated with exposure to Ads has been demonstrated by epidemiological data and clinical research (1, 7, 9, 35, 40, 43). (ii) Ads are among the most prevalent human viruses identified in human sewage and are frequently detected in marine waters and the Great Lakes (17, 32, 33, 35). (iii) Ads are more resistant to UV disinfection than any other bacteria or viruses (3, 5, 10, 24, 41, 42, 44). Thus, they may survive wastewater treatment as increasing numbers of wastewater treatment facilities switch from chlorination to UV to avoid disinfection by-products. (iv) Some serotypes of Ads, including enteric Ad 40 and 41, are fastidious. They are difficult to detect by plaque assay, and a routine assay of infectivity takes 7 to 14 days (8, 20).In this study, recombinant Ad serotype 5 (rAd5) with the E1A gene (the first transcribed gene after infection) replaced by a green fluorescent protein (GFP) gene was first used to test for sensitivity and speed of the assay. Two other viral proteins were then used as targets for development of FACS assays using Ad serotype 2 (Ad2) and Ad41. This study demonstrated the feasibility, sensitivity, and reliability of the assay for detection of infectious Ads in environmental samples.  相似文献   

4.
Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.Bats belong to one of the most diverse, abundant, and widely distributed group of mammals. More than 1,100 bat species belong to the order of Chiroptera, representing approximately 20% of all mammalian species (54). Most bat species feed on insects and other arthropods, while others feed on fruit nectar, bird or mammal blood, and small vertebrates such as fish, frogs, mice, and birds (30). Of the 47 species of bats reported in the United States, most of them are insectivorous (http://www.batcon.org/).Bats are considered the natural reservoir of a large variety of zoonotic viruses causing serious human diseases such as lyssaviruses, henipaviruses, severe acute respiratory syndrome coronavirus, and Ebola virus (6, 38, 46, 59, 63, 65). Characteristics of bats, including their genetic diversity, broad geological distribution, gregarious habits, high population density, migratory habits, and long life span (30, 58), likely endow them with the ability to host diverse viruses, some of which are also able to infect humans and other mammals (41, 63).More than 80 virus species have been isolated or detected in bats using nucleic acid-based methods (6, 38, 59, 65). Viruses that have been recently discovered in bats include astroviruses, adeno-associated viruses (AAVs), adenoviruses, herpesviruses, and polyomavirus (8, 9, 13, 31, 32, 35, 37, 39, 40, 42, 61, 62, 68). For example, it was recently reported that a newly identified adenovirus isolated from bat guano was capable of infecting various vertebrate cell lines, including those of humans, monkeys, dogs, and pigs (35). With increasing human populations in previously wild areas, contact of bats with humans and with wild and domestic animals has increased, providing greater opportunities for cross-species transmissions of potentially pathogenic bat viruses. To better understand the range of viruses carried by bats, we undertook an initial characterization of the guano viromes of several common bat species in the United States.The development of massively parallel sequencing technology makes is possible to reveal uncultured viral assemblages within biological or environmental samples (11, 28). To date, this approach has been used to characterize viruses in equine feces (7), human blood (5), tissue (14), human feces (3, 4, 15, 45, 60, 67), and human respiratory secretions (64), which in turn has facilitated the discovery of many novel viruses (18, 20, 25, 33, 47, 50). In the present study, we analyzed the viruses present in guano from several bat species in California and Texas, using sequence-independent PCR amplification, pyrosequencing, and sequence similarity searches.  相似文献   

5.
Using both sequence- and function-based metagenomic approaches, multiple antibiotic resistance determinants were identified within metagenomic libraries constructed from DNA extracted from bacterial chromosomes, plasmids, or viruses within an activated sludge microbial assemblage. Metagenomic clones and a plasmid that in Escherichia coli expressed resistance to chloramphenicol, ampicillin, or kanamycin were isolated, with many cloned DNA sequences lacking any significant homology to known antibiotic resistance determinants.Activated sludge in wastewater treatment plants is an open system with a dynamic and phylogenetically diverse microbial community (2, 3, 6, 7, 10, 11). Since the activated sludge process promotes cellular interactions among diverse microorganisms, there is great potential for the lateral transfer of antibiotic resistance genes between microbes in activated sludge and in downstream environments. Several studies have previously identified antibiotic resistance determinants from wastewater communities that are carried on bacterial chromosomes (1, 4, 14) and plasmids (9, 12, 13), but to our knowledge, a simultaneous metagenomic survey of antibiotic resistance determinants from all three genetic reservoirs (i.e., chromosomes, plasmids, and viruses) has never been performed within the same environment. To achieve a more comprehensive assessment of antibiotic resistance genes in the activated sludge microbial community, this study used both function- and sequence-based metagenomic approaches to identify antibiotic resistance determinants carried on bacterial chromosomes, plasmids, or viruses within an activated sludge microbial assemblage.  相似文献   

6.
7.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

8.
Shiga toxin-converting bacteriophages (Stx phages) are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7. Stx phages are released from their bacterial hosts after lytic induction and remain free in the environment. Samples were analyzed for the presence of free Stx phages by an experimental approach based on the use of real-time quantitative PCR (qPCR), which enables stx to be detected in the DNA from the viral fraction of each sample. A total of 150 samples, including urban raw sewage samples, wastewater samples with fecal contamination from cattle, pigs, and poultry, and fecal samples from humans and diverse animals, were used in this study. Stx phages were detected in 70.0% of urban sewage samples (10 to 103 gene copies [GC] per ml) and in 94.0% of animal wastewater samples of several origins (10 to 1010 GC per ml). Eighty-nine percent of cattle fecal samples were positive for Stx phages (10 to 105 GC per g of sample), as were 31.8% of other fecal samples of various origins (10 to 104 GC per g of sample). The stx2 genes and stx2 variants were detected in the viral fraction of some of the samples after sequencing of stx2 fragments amplified by conventional PCR. The occurrence and abundance of Stx phages in the extraintestinal environment confirm the role of Stx phages as a reservoir of stx in the environment.Shiga toxin-producing Escherichia coli (STEC) is associated with diarrhea, hemorrhagic enterocolitis, and hemolytic-uremic syndrome in humans (46). Escherichia coli serotype O157:H7 is the main cause of these diseases, although other serotypes of E. coli and other enterobacteria species have been described (36). These E. coli serotypes produce at least two immunologically distinct Shiga toxins, called Stx1 and Stx2. In addition to these, several variations of these toxins have been reported in recent years, showing differences in virulence and distribution in the host populations examined (48, 51). Shiga toxin genes are carried by temperate bacteriophages (19, 35). Stx-encoding bacteriophages investigated to date consist of double-stranded DNA and have lambdoid genetic structures (19, 27, 32, 37, 47). The induction and regulation of these phages are directly involved in the production of toxin and, therefore, in the pathogenicity of the strains (8, 50). Stx phages are efficient vectors for the transfer of toxin genes, being able to convert nonpathogenic bacterial hosts into Stx-producing strains by transduction of stx, as has been demonstrated under various conditions (1, 4, 27, 28, 41, 49).Most of the reported outbreaks of STEC infections are associated with cattle products (10, 17), with the consumption of contaminated foods (10, 34), and with several waterborne infections (30). Stx phages are present within fecally contaminated aquatic environments (9, 28, 30, 32, 45). Moreover, a high percentage of STEC strains present in extraintestinal environments carry inducible Stx phages (14, 30).As individuals infected with STEC strains shed large quantities of Stx phages in feces, Stx phages should be prevalent in the environment, as are other viruses transmitted by the fecal-oral route (5, 11) or bacteriophages infecting bacteria present in the intestinal tract (16, 23). Moreover, those STEC strains isolated from food and animals carry inducible Stx phages (24, 27, 42). The virulence profiles of STEC strains isolated from food also suggest the presence of inducible Stx phages (10).Stx phages in sewage have been detected by nested PCR (28, 29, 31). However, to quantify them, the most probable number (MPN) method was applied, which allows only a rough estimate of the amount of Stx phages present in the sample. To assess the number of Stx phages accurately, real-time quantitative PCR (qPCR) technology is a useful tool. This technology is both sensitive and specific, and it gives accurate quantitative results (25). Comparison with a standard enables the number of copies of stx to be quantified, which can then be translated into the number of Stx phage particles.Little is known about the prevalence of phages carrying stx in fecal samples. The data available on the numbers of these phages in fecally contaminated water samples were only roughly estimated. The first step to evaluate the role of Stx phages in the environment as lateral gene transfer vectors is to know the extent of these viruses in the environment. The aim of this study is to report quantitative data on the abundance of Stx phages in urban sewage samples, in wastewater samples from cattle, pigs, and poultry, and in diverse fecal samples, calculated by means of a methodology based on qPCR.  相似文献   

9.
10.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

11.
The objective of this study was to identify a microbial marker for pig manure contamination. We quantified the persistence of four dominant bacterial groups from the pig intestinal tract throughout manure handling at 10 livestock operations (including aerobic digestion) by using molecular typing. The partial 16S rRNA genes of Bacteroides-Prevotella, Eubacterium-Clostridiaceae, Bacillus-Streptococcus-Lactobacillus (BSL), and Bifidobacterium group isolates were amplified and analyzed by capillary electrophoresis single-strand conformation polymorphism. The most dominant bacterial populations were identified by cloning and sequencing their 16S rRNA genes. The results showed that Bifidobacterium spp. and, to a lesser extent, members of the BSL group, were less affected by the aerobic treatment than either Eubacterium-Clostridiaceae or Bacteroides-Prevotella. Two Bifidobacterium species found in raw manure were still present in manure during land application, suggesting that they can survive outside the pig intestinal tract and also survive aerobic treatment. The 16S-23S rRNA internal transcribed spacer of one species, Bifidobacterium thermacidophilum subsp. porcinum, was sequenced, and a specific pair of primers was designed for its detection in the environment. With this nested PCR assay, this potential marker was not detected in samples from 30 bovine, 30 poultry, and 28 human fecal samples or in 15 urban wastewater effluents. As it was detected in runoff waters after spreading of pig manure, we propose this marker as a suitable microbial indicator of pig manure contamination.Brittany represents only 7% of France but is the main pig production area and hosts approximately 14 million fatteners per year. This high concentration of confined pig feeding has led to the overapplication of manure to soil, which contributes to water pollution. Physical and biological manure treatment processes have been developed to limit nitrogen and phosphorus pollution (5). As these treatments were not designed to eliminate microbial pollution, even treated manure can contain pathogenic microorganisms (27) and agricultural soils and water systems can thus potentially still be contaminated through surface runoff and seepage. As manure application can increase the number of pathogens in the soil (18), pig feces may represent a significant risk to human health in Brittany. Currently, the monitoring of bacteria to assess fecal contamination (Escherichia coli, fecal coliforms, and enterococci) does not differentiate contamination from pig slurry from pollution by other animals or humans. It is thus important to develop analytic tools to specifically detect this source of pollution.Many studies have already proposed potential markers for the detection of host-specific fecal pollution (2, 3, 8, 12-15, 20, 37, 38, 48, 49). Much of this research has concentrated on distinguishing human and animal sources of contamination (3, 8, 20, 30, 38). Some studies have focused on identifying individual sources of animal pollution and have described molecular markers for feces from ducks (13), chickens (37), bovines (2, 3, 49), or cervids (6). Biomarkers have been proposed for porcine fecal contamination but rarely for porcine manure, the bacterial composition of which differs from that of porcine feces (9). Molecular markers have been developed to target the 16S rRNA gene sequences of dominant Eubacteria (2, 14, 43, 48) or methanogenic Archaebacteria (54) of the pig intestinal tract, whereas Khatib et al. (29) targeted the STII toxin gene from enterotoxigenic E. coli. Among the dominant groups of pig fecal Eubacteria, which include Bacteroides-Prevotella, Eubacterium-Clostridiacea, Lactobacillus-Streptococcus (34, 45, 51, 58), and to a lesser extent Bifidobacterium (40), the Bacteroides-Prevotella group has been particularly well studied (14, 22, 44). This marker of pig feces was described by Okabe et al. (44), but their work was based on feces sampled from only two farms and the number of clones analyzed was low. Gourmelon et al. (22) also detected the presence of a specific marker of pig feces belonging to the Bacteroides-Prevotella group in five stored manure samples. Although these studies revealed the presence of specific markers in fecal samples and in the subsequent pig manure samples, they did not address the possible disappearance of these anaerobic bacteria during the storage or biological treatment of the manure.Due to the lack of data concerning the bacterial flora of manure, the aims of this study were (i) to compare the monitoring of the Bacteroides-Prevotella group with that of Eubacterium-Clostridiaceae, Bacillus-Streptococcus-Lactobacillus (BSL), and Bifidobacterium throughout the biological manure treatment process and (ii) to search for a molecular marker among these groups of bacteria that was consistently present in the manure intended for land application. In the first part of this study, the persistence of the dominant bacteria throughout treatment was studied by using molecular typing, capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) (45) based on the analysis of the 16S rRNA genes. CE-SSCP is a fingerprinting technique in which single-stranded DNA fragments of the same length are separated based on the conformation of their secondary structure (23). The major advantages of this technique are its reproducibility between runs and its high resolution power with fewer false results than with denaturing gradient gel electrophoresis (25, 26).The second part of this article describes the relevance of the potential marker of pig manure (Bifidobacterium thermacidophilum subsp. porcinum) selected according to the results of the CE-SSCP profiles and the subsequent identification of dominant peaks of the CE-SSCP profiles. The specificity of this pig marker was then tested by assessing the host distribution in a selection of fecal, manure, and wastewater samples.  相似文献   

12.
The value of Bacteroidales genetic markers and fecal indicator bacteria (FIB) to predict the occurrence of waterborne pathogens was evaluated in ambient waters along the central California coast. Bacteroidales host-specific quantitative PCR (qPCR) was used to quantify fecal bacteria in water and provide insights into contributing host fecal sources. Over 140 surface water samples from 10 major rivers and estuaries within the Monterey Bay region were tested over 14 months with four Bacteroidales-specific assays (universal, human, dog, and cow), three FIB (total coliforms, fecal coliforms, and enterococci), two protozoal pathogens (Cryptosporidium and Giardia spp.), and four bacterial pathogens (Campylobacter spp., Escherichia coli O157:H7, Salmonella spp., and Vibrio spp.). Indicator and pathogen distribution was widespread, and detection was not highly seasonal. Vibrio cholerae was detected most frequently, followed by Giardia, Cryptosporidium, Salmonella, and Campylobacter spp. Bayesian conditional probability analysis was used to characterize the Bacteroidales performance assays, and the ratios of concentrations determined using host-specific and universal assays were used to show that fecal contamination from human sources was more common than livestock or dog sources in coastal study sites. Correlations were seen between some, but not all, indicator-pathogen combinations. The ability to predict pathogen occurrence in relation to indicator threshold cutoff levels was evaluated using a weighted measure that showed the universal Bacteroidales genetic marker to have a comparable or higher mean predictive potential than standard FIB. This predictive ability, in addition to the Bacteroidales assays providing information on contributing host fecal sources, supports using Bacteroidales assays in water quality monitoring programs.Coastal waters worldwide have been influenced by human activities for centuries, as they are adjacent to densely populated areas, provide a means of transportation, and receive substantial recreational use. Consequently, impairments in nearshore water quality can result from enrichment of the coastal marine ecosystem with pollutants and nutrients that are transported down watersheds from land to sea. This poses health risks to humans and animals. Microbial pollution is caused by fecal contamination from a variety of sources, including humans, livestock, pets, and wildlife, and fecal pathogen pollution has been associated with numerous outbreaks of waterborne disease (14, 15, 27, 41, 49, 55).Fecal indicator bacteria (FIB) that normally reside in the gastrointestinal tracts of humans and animals are used throughout the world to assess the microbiological quality of drinking and recreational waters. In the United States, FIB are used to define bacterial water quality standards aimed at reducing health risks in recreational waters, as required by the Beaches Environmental Assessment and Coastal Health Act (5), which amended the Clean Water Act (11). Groups of standard FIB monitored in water include total coliforms (TC), fecal coliforms (FC), Escherichia coli bacteria, and enterococci. These bacterial groups have been considered indicators of health risks in epidemiologic and quantitative microbial risk assessment (QMRA) studies (38, 42, 59, 66).To date, many monitoring programs have focused only on FIB measurements and do not test for pathogens. However, substantial evidence has been collected that challenges the usefulness of FIB data alone. A few limitations of using standard FIB to represent pathogens in water include the fact that FIB have been shown to multiply in the environment, that they are not host specific, and that the absence of FIB is not necessarily evidence of pathogen absence (21, 50, 51, 56). Consequently, alternative indicators of fecal pollution that address the weaknesses of standard FIB are needed. Ideally, these indicators would decay at rates similar to those of pathogens, be present at high concentrations in fecal sources, and be present at low concentrations in unpolluted environments. Proposed alternative indicators include (i) anaerobic bacteria such as bifidobacteria (46), Clostridium perfringens (22), and Bacteroidales (20); (ii) viruses such as F-specific RNA (F-RNA)-specific coliphages (39), phages infecting Bacteroides fragilis (30), and host-specific viruses (25); and (iii) chemical compounds such as fecal sterols (29). An added benefit of using alternative indicators is that, in some cases, host sources of fecal contamination can be identified.Over a decade ago, PCR-based assays were developed to detect Bacteroides in an effort to monitor human fecal pollution in the environment (36, 37). This approach was adopted by others and further advanced to identify host-specific Bacteroidales 16S rRNA gene markers for different fecal sources. This has resulted in PCR and quantitative PCR (qPCR) assays for the detection of human, dog, pig, and cow Bacteroidales markers (6, 7, 16, 34, 57) as well as assays for the detection of general Bacteroidales markers (7, 34). The analysis of Bacteroidales markers has been incorporated in microbial source tracking (MST) studies, particularly in the United States, Japan, and Europe (24, 45, 52-54, 64).The objective of this study was to compare the abilities of Bacteroidales markers and FIB to predict the occurrence of waterborne pathogens in riverine and estuarine waters in California and to use several statistical approaches to better characterize the strengths and limitations of the assays. We hypothesized that Bacteroidales and FIB would correlate with bacterial and protozoal pathogen detection in surface waters. To test this hypothesis, four Bacteroidales-specific assays (universal, human, dog, and cow), three types of FIB (total coliforms, fecal coliforms, and enterococci), two protozoal pathogens (Cryptosporidium and Giardia spp.), and four bacterial pathogens (Campylobacter spp., E. coli O157, Salmonella spp., and Vibrio spp.) were monitored monthly for 14 months in 10 streams, rivers, and estuaries feeding into the Monterey Bay region of California.  相似文献   

13.
In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.In animals, RNA interference (RNAi) was first described for Caenorhabditis elegans (27). The production or introduction of double-stranded RNA (dsRNA) in cells leads to the degradation of mRNAs containing homologous sequences by sequence-specific cleavage of mRNAs. Central to RNAi is the production of 21- to 26-nucleotide small interfering RNAs (siRNAs) from dsRNA and the assembly of an RNA-induced silencing complex (RISC), followed by the degradation of the target mRNA (23, 84). RNAi is a known antiviral strategy of plants (3, 53) and insects (21, 39, 51). Study of Drosophila melanogaster in particular has given important insights into RNAi responses against pathogenic viruses and viral RNAi inhibitors (31, 54, 83, 86, 91). RNAi is well characterized for Drosophila, and orthologs of antiviral RNAi genes have been found in Aedes and Culex spp. (13, 63).Arboviruses, or arthropod-borne viruses, are RNA viruses mainly of the families Bunyaviridae, Flaviviridae, and Togaviridae. The genus Alphavirus within the family Togaviridae contains several mosquito-borne pathogens: arboviruses such as Chikungunya virus (16) and equine encephalitis viruses (88). Replication of the prototype Sindbis virus and Semliki Forest virus (SFV) is well understood (44, 71, 74, 79). Their genome consists of a positive-stranded RNA with a 5′ cap and a 3′ poly(A) tail. The 5′ two-thirds encodes the nonstructural polyprotein P1234, which is cleaved into four replicase proteins, nsP1 to nsP4 (47, 58, 60). The structural polyprotein is encoded in the 3′ one-third of the genome and cleaved into capsid and glycoproteins after translation from a subgenomic mRNA (79). Cytoplasmic replication complexes are associated with cellular membranes (71). Viruses mature by budding at the plasma membrane (35).In nature, arboviruses are spread by arthropod vectors (predominantly mosquitoes, ticks, flies, and midges) to vertebrate hosts (87). Little is known about how arthropod cells react to arbovirus infection. In mosquito cell cultures, an acute phase with efficient virus production is generally followed by the establishment of a persistent infection with low levels of virus production (9). This is fundamentally different from the cytolytic events following arbovirus interactions with mammalian cells and pathogenic insect viruses with insect cells. Alphaviruses encode host response antagonists for mammalian cells (2, 7, 34, 38).RNAi has been described for mosquitoes (56) and, when induced before infection, antagonizes arboviruses and their replicons (1, 4, 14, 15, 29, 30, 32, 42, 64, 65). RNAi is also functional in various mosquito cell lines (1, 8, 43, 49, 52). In the absence of RNAi, alphavirus and flavivirus replication and/or dissemination is enhanced in both mosquitoes and Drosophila (14, 17, 31, 45, 72). RNAi inhibitors weakly enhance SFV replicon replication in tick and mosquito cells (5, 33), posing the questions of how, when, and where RNAi interferes with alphavirus infection in mosquito cells.Here we use an A. albopictus-derived mosquito cell line to study RNAi responses to SFV. Using reporter-based assays, we demonstrate that SFV cannot avoid or efficiently inhibit the establishment of an RNAi response. We also demonstrate that the RNAi signal can spread between mosquito cells. SFV cannot inhibit cell-to-cell spread of the RNAi signal, and spread of the virus-induced RNAi signal (dsRNA/siRNA) can inhibit the replication of incoming SFV in neighboring cells. Furthermore, we show that SFV expression of a siRNA-binding protein increases levels of virus replication mainly by enhancing virus spread between cells rather than replication in initially infected cells. Taken together, these findings suggest a novel mechanism, cell-to-cell spread of antiviral dsRNA/siRNA, by which RNAi limits SFV dissemination in mosquito cells.  相似文献   

14.
Enteric viruses are important pathogens found in contaminated surface waters and have previously been detected in waters of the Great Lakes. Human adenoviruses were monitored because of their high prevalence and persistence in aquatic environments. In this study, we quantified adenoviruses in wastewater, surface water, and combined sewer overflows (CSOs) by real-time PCR. Between August 2005 and August 2006, adenovirus concentrations in raw sewage, primary-treated effluent, secondary-treated effluent, and chlorinated effluent from a wastewater treatment plant in Michigan were examined. CSO samples (n = 6) were collected from a CSO retention basin in Grand Rapids, MI. Adenoviruses were detected in 100% of wastewater and CSO discharge samples. Average adenovirus DNA concentrations in sewage and CSOs were 1.15 × 106 viruses/liter and 5.35 × 105 viruses/liter, respectively. Adenovirus removal was <2 log10 (99%) at the wastewater treatment plant. Adenovirus type 41 (60% of clones), type 12 (29%), type 40 (3%), type 2 (3%), and type 3 (3%) were isolated from raw sewage and primary effluents (n = 28). Six of 20 surface water samples from recreational parks at the lower Grand River showed virus concentrations above the real-time PCR detection limit (average, 7.8 × 103 viruses/liter). This research demonstrates that wastewater effluents and wastewater-impacted surface waters in the lower Grand River in Michigan contain high levels of viruses and may not be suitable for full-body recreational activities. High concentrations of adenovirus in these waters may be due to inefficient removal during wastewater treatment and to the high persistence of these viruses in the environment.Enteric viruses are important waterborne pathogens. They are frequently isolated from feces-contaminated water and have been linked to numerous waterborne outbreaks (9, 34, 42, 61). This group of pathogens includes adenoviruses, enteroviruses, hepatitis A virus, noroviruses, and rotavirus. In the Great Lakes region, enteric viruses were isolated from recreational beaches and groundwater for municipal usage, indicating an elevated public health risk in consuming or coming into contact with these waters (15, 69). Although recent developments in molecular detection assays substantially increase the detection of viruses from waters, from a management standpoint it is impractical to test all viruses when determining the microbial quality of water. Here we propose that adenovirus monitoring can be used to examine wastewater impacts on surface water quality.Adenoviruses, which have a high prevalence in water, have been suggested as preferred candidates as index organisms for viral pathogens because they fit most criteria for an ideal indicator (19, 33, 38, 54). It is estimated that more than 90% of the human population is seropositive for one or more serotypes of adenoviruses (11, 68). Human adenoviruses (HAdVs) are present at a higher frequency in sewage than are other enteric viruses (54) and are excreted in high concentrations from infected patients (up to 1011 viral particles per gram of feces) (68).Adenoviruses were first isolated from humans and identified as the causative agent of epidemic febrile respiratory disease among military recruits in the 1950s (30, 55). Human adenoviruses are the second most important viral pathogen of infantile gastroenteritis, after rotavirus (3, 10, 44, 51, 58, 62, 65). Serotypes of adenoviruses have been found to cause symptomatic infections in several organ systems, including the respiratory system (pharyngitis, acute respiratory disease, and pneumonia), eye (conjunctivitis), gastrointestinal tract (gastroenteritis), central nervous system (meningoencephalitis), and genitalia (urethritis and cervicitis) (8, 37). Human adenovirus types 40 and 41 have been associated with gastroenteritis in children, while human adenovirus type 4 is linked to persistent epidemics of acute respiratory disease in the United States (10, 49). It was estimated that 2 to 7% of all lower respiratory tract illnesses in children may be caused by adenoviruses (5, 17).Transmission routes of adenoviruses include the fecal-oral route and inhalation of aerosols. Adenoviruses have been associated with outbreaks in different settings, including military camps (7, 36, 40), hospitals (6, 28, 32), day care centers (1, 38), and schools (27). Waterborne outbreaks due to adenoviruses have also involved swimming pools (53, 64).It is hypothesized that combined sewer overflows (CSOs; where storm water and untreated sewage are combined) may contribute high concentrations of waterborne pathogens, especially viruses, which in turn may pose an adverse risk to human health. In older cities of Michigan, such as Detroit, East Lansing, and Grand Rapids, major contributors to microbial contamination of surface water during high-rainfall events include discharges from sanitary sewer systems and combined sewer systems. The federal government''s effort to control CSOs started in 1994, when the U.S. EPA published the CSO Control Policy as the national framework. In Michigan, the first CSO policy was drafted by the Department of Environmental Quality in 1983. However, the first noncontested permit requiring a long-term CSO correction program was issued to the Grand Rapids wastewater treatment plant (WWTP) only in Fall 1988, following a large CSO event in the city that affected water quality downstream, in Grand Haven (50). To date, Michigan communities have eliminated 75% of the 613 untreated CSO outfalls that existed in the year 1988, and the remaining 25% are scheduled for correction/elimination through implementation of long-term control plans. However, water quality after CSO or any sewage spill remains a public health concern to individuals via recreational water exposure at recreational parks and beaches downstream of discharge sites.The aim of this study was to evaluate the presence and concentration of adenoviruses in sewage and in the Grand River in the state of Michigan. Raw sewage, wastewater effluent, CSO discharges, and surface water in the lower Grand River were surveyed for the occurrence and concentration of human adenoviruses. Real-time PCR was used for quantification. Predominant adenovirus genotypes in sewage were determined, and the efficiency of virus removal during wastewater treatment was evaluated.  相似文献   

15.
Clade B of the New World arenaviruses contains both pathogenic and nonpathogenic members, whose surface glycoproteins (GPs) are characterized by different abilities to use the human transferrin receptor type 1 (hTfR1) protein as a receptor. Using closely related pairs of pathogenic and nonpathogenic viruses, we investigated the determinants of the GP1 subunit that confer these different characteristics. We identified a central region (residues 85 to 221) in the Guanarito virus GP1 that was sufficient to interact with hTfR1, with residues 159 to 221 being essential. The recently solved structure of part of the Machupo virus GP1 suggests an explanation for these requirements.Arenaviruses are bisegmented, single-stranded RNA viruses that use an ambisense coding strategy to express four proteins: NP (nucleoprotein), Z (matrix protein), L (polymerase), and GP (glycoprotein). The viral GP is sufficient to direct entry into host cells, and retroviral vectors pseudotyped with GP recapitulate the entry pathway of these viruses (5, 13, 24, 31). GP is a class I fusion protein comprising two subunits, GP1 and GP2, cleaved from the precursor protein GPC (4, 14, 16, 18, 21). GP1 contains the receptor binding domain (19, 28), while GP2 contains structural elements characteristic of viral membrane fusion proteins (8, 18, 20, 38). The N-terminal stable signal peptide (SSP) remains associated with the mature glycoprotein after cleavage (2, 39) and plays a role in transport, maturation, and pH-dependent fusion (17, 35, 36, 37).The New World arenaviruses are divided into clades A, B, and C based on phylogenetic relatedness (7, 9, 11). Clade B contains the human pathogenic viruses Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Sabia, and Chapare, which cause severe hemorrhagic fevers in South America (1, 10, 15, 26, 34). Clade B also contains the nonpathogenic viruses Amapari (AMAV), Cupixi, and Tacaribe (TCRV), although mild disease has been reported for a laboratory worker infected with TCRV (29).Studies with both viruses and GP-pseudotyped retroviral vectors have shown that the pathogenic clade B arenaviruses use the human transferrin receptor type 1 (hTfR1) to gain entry into human cells (19, 30). In contrast, GPs from nonpathogenic viruses, although capable of using TfR1 orthologs from other species (1), cannot use hTfR1 (1, 19) and instead enter human cells through as-yet-uncharacterized hTfR1-independent pathways (19). In addition, human T-cell lines serve as useful tools to distinguish these GPs, since JUNV, GTOV, and MACV pseudotyped vectors readily transduce CEM cells, while TCRV and AMAV GP vectors do not (27; also unpublished data). These properties of the GPs do not necessarily reflect a tropism of the pathogenic viruses for human T cells, since viral tropism is influenced by many factors and T cells are not a target for JUNV replication in vivo (3, 22, 25).  相似文献   

16.
The combinatorial nature of genetic recombination can potentially provide organisms with immediate access to many more positions in sequence space than can be reached by mutation alone. Recombination features particularly prominently in the evolution of a diverse range of viruses. Despite rapid progress having been made in the characterization of discrete recombination events for many species, little is currently known about either gross patterns of recombination across related virus families or the underlying processes that determine genome-wide recombination breakpoint distributions observable in nature. It has been hypothesized that the networks of coevolved molecular interactions that define the epistatic architectures of virus genomes might be damaged by recombination and therefore that selection strongly influences observable recombination patterns. For recombinants to thrive in nature, it is probably important that the portions of their genomes that they have inherited from different parents work well together. Here we describe a comparative analysis of recombination breakpoint distributions within the genomes of diverse single-stranded DNA (ssDNA) virus families. We show that whereas nonrandom breakpoint distributions in ssDNA virus genomes are partially attributable to mechanistic aspects of the recombination process, there is also a significant tendency for recombination breakpoints to fall either outside or on the peripheries of genes. In particular, we found significantly fewer recombination breakpoints within structural protein genes than within other gene types. Collectively, these results imply that natural selection acting against viruses expressing recombinant proteins is a major determinant of nonrandom recombination breakpoint distributions observable in most ssDNA virus families.Genetic recombination is a ubiquitous biological process that is both central to DNA repair pathways (10, 57) and an important evolutionary mechanism. By generating novel combinations of preexisting nucleotide polymorphisms, recombination can potentially accelerate evolution by increasing the population-wide genetic diversity upon which adaptive selection relies. Recombination can paradoxically also prevent the progressive accumulation of harmful mutations within individual genomes (18, 35, 53). Whereas its ability to defend high-fitness genomes from mutational decay possibly underlies the evolutionary value of sexuality in higher organisms, in many microbial species where pseudosexual genetic exchange is permissible among even highly divergent genomes, recombination can enable access to evolutionary innovations that would otherwise be inaccessible by mutation alone.Such interspecies recombination is fairly common in many virus families (8, 17, 27, 44, 82). It is becoming clear, however, that as with mutation events, most recombination events between distantly related genomes are maladaptive (5, 13, 38, 50, 63, 80). As genetic distances between parental genomes increase, so too does the probability of fitness defects in their recombinant offspring (16, 51). The viability of recombinants is apparently largely dependent on how severely recombination disrupts coevolved intragenome interaction networks (16, 32, 51). These networks include interacting nucleotide sequences that form secondary structures, sequence-specific protein-DNA interactions, interprotein interactions, and amino acid-amino acid interactions within protein three-dimensional folds.One virus family where such interaction networks appear to have a large impact on patterns of natural interspecies recombination are the single-stranded DNA (ssDNA) geminiviruses. As with other ssDNA viruses, recombination is very common among the species of this family (62, 84). Partially conserved recombination hot and cold spots have been detected in different genera (39, 81) and are apparently caused by both differential mechanistic predispositions of genome regions to recombination and natural selection disfavoring the survival of recombinants with disrupted intragenome interaction networks (38, 51).Genome organization and rolling circle replication (RCR)—the mechanism by which geminiviruses and many other ssDNA viruses replicate (9, 67, 79; see reference 24 for a review)—seem to have a large influence on basal recombination rates in different parts of geminivirus genomes (20, 33, 39, 61, 81). To initiate RCR, virion-strand ssDNA molecules are converted by host-mediated pathways into double-stranded “replicative-form” (RF) DNAs (34, 67). Initiated by a virus-encoded replication-associated protein (Rep) at a well-defined virion-strand replication origin (v-ori), new virion strands are synthesized on the complementary strand of RF DNAs (28, 73, 74) by host DNA polymerases. Virion-strand replication is concomitant with the displacement of old virion strands, which, once complete, yields covalently closed ssDNA molecules which are either encapsidated or converted into additional RF DNAs. Genome-wide basal recombination rates in ssDNA viruses are probably strongly influenced by the specific characteristics of host DNA polymerases that enable RCR. Interruption of RCR has been implicated directly in geminivirus recombination (40) and is most likely responsible for increased basal recombination rates both within genes transcribed in the opposite direction from that of virion-strand replication (40, 71) and at the v-ori (1, 9, 20, 69, 74).Whereas most ssDNA virus families replicate via either a rolling circle mechanism (the Nanoviridae, Microviridae, and Geminiviridae) (3, 23, 24, 31, 59, 67, 74) or a related rolling hairpin mechanism (the Parvoviridae) (25, 76), among the Circoviridae only the Circovirus genus is known to use RCR (45). Although the Gyrovirus genus (the other member of the Circoviridae) and the anelloviruses (a currently unclassified ssDNA virus group) might also use RCR, it is currently unknown whether they do or not (78). Additionally, some members of the Begomovirus genus of the Geminiviridae either have a second genome component, called DNA-B, or are associated with satellite ssDNA molecules called DNA-1 and DNA-Beta, all of which also replicate by RCR (1, 47, 68).Recombination is known to occur in the parvoviruses (19, 43, 70), microviruses (66), anelloviruses (40, 46), circoviruses (11, 26, 60), nanoviruses (30), geminivirus DNA-B components, and geminivirus satellite molecules (2, 62). Given that most, if not all, of these ssDNA replicons are evolutionarily related to and share many biological features with the geminiviruses (22, 31, 36), it is of interest to determine whether conserved recombination patterns observed in the geminiviruses (61, 81) are evident in these other groups. To date, no comparative analyses have ever been performed with different ssDNA virus families to identify, for example, possible influences of genome organization on recombination breakpoint distributions found in these viruses.Here we compare recombination frequencies and recombination breakpoint distributions in most currently described ssDNA viruses and satellite molecules and identify a number of sequence exchange patterns that are broadly conserved across this entire group.  相似文献   

17.
Many novel reassortant influenza viruses of the H9N2 genotype have emerged in aquatic birds in southern China since their initial isolation in this region in 1994. However, the genesis and evolution of H9N2 viruses in poultry in eastern China have not been investigated systematically. In the current study, H9N2 influenza viruses isolated from poultry in eastern China during the past 10 years were characterized genetically and antigenically. Phylogenetic analysis revealed that these H9N2 viruses have undergone extensive reassortment to generate multiple novel genotypes, including four genotypes (J, F, K, and L) that have never been recognized before. The major H9N2 influenza viruses represented by A/Chicken/Beijing/1/1994 (Ck/BJ/1/94)-like viruses circulating in poultry in eastern China before 1998 have been gradually replaced by A/Chicken/Shanghai/F/1998 (Ck/SH/F/98)-like viruses, which have a genotype different from that of viruses isolated in southern China. The similarity of the internal genes of these H9N2 viruses to those of the H5N1 influenza viruses isolated from 2001 onwards suggests that the Ck/SH/F/98-like virus may have been the donor of internal genes of human and poultry H5N1 influenza viruses circulating in Eurasia. Experimental studies showed that some of these H9N2 viruses could be efficiently transmitted by the respiratory tract in chicken flocks. Our study provides new insight into the genesis and evolution of H9N2 influenza viruses and supports the notion that some of these viruses may have been the donors of internal genes found in H5N1 viruses.Wild birds, including wild waterfowls, gulls, and shorebirds, are the natural reservoirs for influenza A viruses, in which they are thought to be in evolutionary stasis (2, 33). However, when avian influenza viruses are transmitted to new hosts such as terrestrial poultry or mammals, they evolve rapidly and may cause occasional severe systemic infection with high morbidity (20, 29). Despite the fact that avian influenza virus infection occurs commonly in chickens, it is unable to persist for a long period of time due to control efforts and/or a failure of the virus to adapt to new hosts (29). In the past 20 years, greater numbers of outbreaks in poultry have occurred, suggesting that the avian influenza virus can infect and spread in aberrant hosts for an extended period of time (5, 14-16, 18, 32).During the past 10 years, H9N2 influenza viruses have become panzootic in Eurasia and have been isolated from outbreaks in poultry worldwide (3, 5, 11, 14-16, 18, 24). A great deal of previous studies demonstrated that H9N2 influenza viruses have become established in terrestrial poultry in different Asian countries (5, 11, 13, 14, 18, 21, 24, 35). In 1994, H9N2 viruses were isolated from diseased chickens in Guangdong province, China, for the first time (4), and later in domestic poultry in other provinces in China (11, 16, 18, 35). Two distinct H9N2 virus lineages represented by A/Chicken/Beijing/1/94 (H9N2) and A/Quail/Hong Kong/G1/98 (H9N2), respectively, have been circulating in terrestrial poultry of southern China (9). Occasionally these viruses expand their host range to other mammals, including pigs and humans (6, 17, 22, 34). Increasing epidemiological and laboratory findings suggest that chickens may play an important role in expanding the host range for avian influenza virus. Our systematic surveillance of influenza viruses in chickens in China showed that H9N2 subtype influenza viruses continued to be prevalent in chickens in mainland China from 1994 to 2008 (18, 19, 36).Eastern China contains one metropolitan city (Shanghai) and five provinces (Jiangsu, Zhejiang, Anhui, Shandong, and Jiangxi), where domestic poultry account for approximately 50% of the total poultry population in China. Since 1996, H9N2 influenza viruses have been isolated regularly from both chickens and other minor poultry species in our surveillance program in the eastern China region, but their genetic diversity and the interrelationships between H9N2 influenza viruses and different types of poultry have not been determined. Therefore, it is imperative to explore the evolution and properties of these viruses. The current report provides insight into the genesis and evolution of H9N2 influenza viruses in eastern China and presents new evidence for the potential crossover between H9N2 and H5N1 influenza viruses in this region.  相似文献   

18.
19.
Porcine circovirus type 1 (PCV1), originally isolated as a contaminant of PK-15 cells, is nonpathogenic, whereas porcine circovirus type 2 (PCV2) causes an economically important disease in pigs. To determine the factors affecting virus replication, we constructed chimeric viruses by swapping open reading frame 1 (ORF1) (rep) or the origin of replication (Ori) between PCV1 and PCV2 and compared the replication efficiencies of the chimeric viruses in PK-15 cells. The results showed that the replication factors of PCV1 and PCV2 are fully exchangeable and, most importantly, that both the Ori and rep of PCV1 enhance the virus replication efficiencies of the chimeric viruses with the PCV2 backbone.Porcine circovirus (PCV) is a single-stranded DNA virus in the family Circoviridae (34). Type 1 PCV (PCV1) was discovered in 1974 as a contaminant of porcine kidney cell line PK-15 and is nonpathogenic in pigs (31-33). Type 2 PCV (PCV2) was discovered in piglets with postweaning multisystemic wasting syndrome (PMWS) in the mid-1990s and causes porcine circovirus-associated disease (PCVAD) (1, 9, 10, 25). PCV1 and PCV2 have similar genomic organizations, with two major ambisense open reading frames (ORFs) (16). ORF1 (rep) encodes two viral replication-associated proteins, Rep and Rep′, by differential splicing (4, 6, 21, 22). The Rep and Rep′ proteins bind to specific sequences within the origin of replication (Ori) located in the intergenic region, and both are responsible for viral replication (5, 7, 8, 21, 23, 28, 29). ORF2 (cap) encodes the immunogenic capsid protein (Cap) (26). PCV1 and PCV2 share approximately 80%, 82%, and 62% nucleotide sequence identity in the Ori, rep, and cap, respectively (19).In vitro studies using a reporter gene-based assay system showed that the replication factors of PCV1 and PCV2 are functionally interchangeable (2-6, 22), although this finding has not yet been validated in a live infectious-virus system. We have previously shown that chimeras of PCV in which cap has been exchanged between PCV1 and PCV2 are infectious both in vitro and in vivo (15), and an inactivated vaccine based on the PCV1-PCV2 cap (PCV1-cap2) chimera is used in the vaccination program against PCVAD (13, 15, 18, 27).PCV1 replicates more efficiently than PCV2 in PK-15 cells (14, 15); thus, we hypothesized that the Ori or rep is directly responsible for the differences in replication efficiencies. The objectives of this study were to demonstrate that the Ori and rep are interchangeable between PCV1 and PCV2 in a live-virus system and to determine the effects of swapped heterologous replication factors on virus replication efficiency in vitro.  相似文献   

20.
In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens.Maintaining healthy coastal water systems is essential, since poor water quality can have detrimental effects on mangroves, seagrass beds, coral reefs, the fishing and shellfish harvesting industries, and the health of recreational water users (1, 5, 15, 17, 20, 44). Since 1972 in the United States, each state has been required to set total maximum daily loads (TMDLs) for pollutants in water bodies according to section 303(d) of the Clean Water Act (50). The probability that microbial pathogens are present is estimated by enumerating indicator bacteria, which are shed in the feces of humans and most animals. The U.S. Environmental Protection Agency recommends using Escherichia coli and enterococci to assess the quality of freshwater and saline water, respectively (47); however, Florida currently uses fecal coliforms and enterococci as indicators of fecal pollution (42).When bacterial indicators exceed regulatory levels, a plan of action (TMDL implementation) must be developed to reduce pathogens. TMDL plans for “pathogen” reduction are particularly problematic because they rely upon surrogate indicator bacteria, which yield little or no insight as to the source of pollution. High indicator bacteria concentrations can be attributed to many sources, including agricultural runoff, storm water runoff, wildlife, pets, faulty septic systems (onsite wastewater treatment and disposal systems), and a failing central sewer infrastructure (5, 12, 28).To address the issue of source identification, methods have been developed in which the biochemistry or genetics of certain microorganisms are used to indirectly identify probable source(s) of fecal pollution, which is termed microbial source tracking (MST) (48). MST methods based on detection of a source-associated gene (marker) by PCR have proliferated over the past 10 years due to the additional information they can provide to watershed managers on fecal contamination sources (43). Although marker detection by endpoint (binary) PCR can give important insights on the source(s) of fecal contamination, quantitative measurements can provide information about the relative magnitude of contamination from various sources. Moreover, epidemiological studies on the correlation between recreational water use, microbial contamination, and the risk of illness will greatly benefit from the ability to quantify MST markers, rather than simply assessing binary (+/−) detection.Although many bacterial targets have been proposed for MST of human sewage (8, 39, 46a), fewer viral targets have been investigated (19, 24, 33). Polyomavirus is the sole genus in the family Polyomaviridae (22). These viruses have a 5-kbp double-stranded DNA genome surrounded by a 40- to 50-nm icosahedral capsid (38). The JCV and BKV human polyomaviruses (HPyVs) have similarly structured genomes that show ∼75% identity (21). BK virus (BKV) and JC virus (JCV) gained much attention in the late 1970s as the etiological agents of kidney nephritis (i.e., BKV reactivation in the kidneys) and progressive multifocal leukoencephalopathy (i.e., JCV reactivation in brain tissue) in the immunocompromised (16, 34). Serological studies have shown that >70% of adults harbor antibodies to BKV or JCV (27, 30, 44). These viruses are known for producing lifelong, asymptomatic viruria in immunocompetent individuals (37). In 2000 it was first suggested that JCV would be a useful indicator of human sewage in water (11). The obligate host specificity and abundance of BKV and JCV in municipal sewage has led to the successful use of these viruses to indicate human fecal pollution in environmental water samples (12, 29).Due to the health implications of BKV and JCV, several methods have been developed to rapidly detect either BKV or JCV in clinical samples (6, 31, 35, 56). However, from an MST standpoint, it is advantageous to target both BKV and JCV. BKV has been found in feces (54), and both viruses are excreted in the urine (6, 11, 37, 55, 60) either simultaneously or individually. The focus of this research was the modification of the previously developed nested PCR protocol for HPyVs detection (29) to a TaqMan quantitative PCR (QPCR) assay to simultaneously detect and quantify both BKV and JCV. Furthermore, we compared measurements obtained with the newly developed QPCR assay to those of other water quality indicators and MST markers. These indicators included bacterial indicator concentrations (49) and PCR detection of human-associated markers currently used for MST. These included human-associated Bacteroidetes (8), Methanobrevibacter smithii (46a), and adenovirus (36). To assess the potential of HPyVs to mimic the fate of pathogens in water, the persistence of all of the water quality indicators was assessed, and relationships between bacterial indicator organisms and MST markers in both human waste samples as well as contaminated environmental samples were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号