首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escape from X inactivation results in expression of genes embedded within inactive chromatin, suggesting the existence of boundary elements between domains. We report that the 5' end of Jarid1c, a mouse escape gene adjacent to an inactivated gene, binds CTCF, displays high levels of histone H3 acetylation, and functions as a CTCF-dependent chromatin insulator. CpG island methylation at Jarid1c was very low during development and virtually absent at the CTCF sites, signifying that CTCF may influence DNA methylation and chromatin modifications. CTCF binding sites were also present at the 5' end of two other escape genes, mouse Eif2s3x and human EIF2S3, each adjacent to an inactivated gene, but not at genes embedded within large escape domains. Thus, CTCF was specifically bound to transition regions, suggesting a role in maintaining both X inactivation and escape domains. Furthermore, the evolution of X chromosome domains appears to be associated with repositioning of chromatin boundary elements.  相似文献   

2.
3.
BackgroundIn mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems.ResultsWe find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele.ConclusionsBy applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0728-8) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
6.
7.
8.
9.
10.
《Epigenetics》2013,8(2):114-118
It is now estimated that 150-200 genes clustered in several discrete regions escape X inactivation in somatic cells of human females by unknown mechanisms. Here, we show that although the human female inactive X chromosome is largely devoid of histone 3 lysine 4 trimethylation (H3K4me3), regions that are known to escape X inactivation, including the pseudoautosomal regions, are enriched with this modification. Also, H3K4me3, unlike H3K4me2 and H4 and H3 acetylation, is restricted to discrete regions on metaphase chromosomes. In contrast to humans, there are only a few genes that are known to escape X inactivation in the mouse. Therefore, we examined mouse female somatic cells with H3K4me3 to identify candidate regions with genes that escape X inactivation. We found the mouse female inactive X in somatic cells and the male inactive X in meiosis to have seven discrete regions that are enriched with H3K4me3. Furthermore, RNA polymerase II is largely excluded from the XY body at male pachytene except for several discrete regions on the X and Y suggesting the presence of regions that also escape sex chromosome inactivation during male meiosis.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号