共查询到20条相似文献,搜索用时 15 毫秒
1.
Daniel Solis-Escalante Niels G. A. Kuijpers Nuria Barrajon-Simancas Marcel van den Broek Jack T. Pronk Jean-Marc Daran Pascale Daran-Lapujade 《Eukaryotic cell》2015,14(8):804-816
As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae''s current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the “minimal glycolysis” [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community. 相似文献
2.
《Bioscience, biotechnology, and biochemistry》2013,77(4):704-709
The Saccharomyces cerevisiae iki mutants show an insensitive phenotype to the pGKL killer toxin, and we have cloned some IKI genes by complementation of this phenotype [Kishida et al., Biosci. Biotech. Biochem., 60, 798–801 (1996)]. Here, we identified and characterized the IKI1 and IKI3 genes. DNA sequencing of the genes showed that both have 100% identity with hypothetical genes identified by the yeast genome project, YHR187w (481,911–480,985 in chromosome VIII) for IKI1, and YLR384c (888,852–892,898 in chromosome XII) for IKI3. Both are novel genes with no significant identity with other known genes and they do not belong to any homology domain group, gene family, or superfamily. The disruption of IKI1 is not lethal, but growth of the disruptant was slower than that of the wild type at all temperatures examined. The disruptant was the killer-insensitive phenotype. The sequence of the IK11 gene predicted a hydrophilic protein with a molecular mass of 35 kDa (309 amino acids). A 35-kDa protein band was also detected by immunoblotting the 25,000 × g pellet fraction of the wild type yeast cell lysate. Disruption of the IKI3 gene is also non-lethal and it has the killer-insensitive phenotype. Iki3p may contain a transmembrane domain near the NH2-terminal region (97–113 residues in a total of 1349 amino acids). 相似文献
3.
El’darov M. A. Avdanina D. A. Shalamitskii M. Yu. Ivanova E. V. Tanashchuk T. N. Kishkovskaya S. A. Ravin N. V. Mardanov A. V. 《Microbiology》2019,88(2):200-205
Microbiology - Iron is an essential micronutrient for all living organisms. The mechanisms of iron transport and homeostasis have been studied in detail in Saccharomyces cerevisiae yeasts, and iron... 相似文献
4.
Rhonda R. McCartney Dakshayini G. Chandrashekarappa Bob B. Zhang Martin C. Schmidt 《Genetics》2014,198(2):635-646
Aerobic glycolysis is a metabolic pathway utilized by human cancer cells and also by yeast cells when they ferment glucose to ethanol. Both cancer cells and yeast cells are inhibited by the presence of low concentrations of 2-deoxyglucose (2DG). Genetic screens in yeast used resistance to 2-deoxyglucose to identify a small set of genes that function in regulating glucose metabolism. A recent high throughput screen for 2-deoxyglucose resistance identified a much larger set of seemingly unrelated genes. Here, we demonstrate that these newly identified genes do not in fact confer significant resistance to 2-deoxyglucose. Further, we show that the relative toxicity of 2-deoxyglucose is carbon source dependent, as is the resistance conferred by gene deletions. Snf1 kinase, the AMP-activated protein kinase of yeast, is required for 2-deoxyglucose resistance in cells growing on glucose. Mutations in the SNF1 gene that reduce kinase activity render cells hypersensitive to 2-deoxyglucose, while an activating mutation in SNF1 confers 2-deoxyglucose resistance. Snf1 kinase activated by 2-deoxyglucose does not phosphorylate the Mig1 protein, a known Snf1 substrate during glucose limitation. Thus, different stimuli elicit distinct responses from the Snf1 kinase. 相似文献
5.
减数分裂是生物体重要的有性生殖方式,它提供来自母本和父本的基因信息,产生具有生物多样性的子代,使其能够适应环境的变化而不断进化。本文简述了现已阐明的酿酒酵母减数分裂的重要事件如同源染色体配对、联会、基因重组、染色体分裂和特异性基因。在同源染色体配对的过程中现已发现了2条途径,一条由Rad51独立完成,另一条有Dmc1、Hop2、Rad51和Mnd1参与,同时Rad51也可能参与。Red1、Hop1和Zip1是联会复合体的组成成分,而联会也要求其他减数分裂的特异性基因如Hop2的参与。基因重组是减数分裂中最重要的事件,它为子代提供了新的遗传信息,是生物多样性的基础之一。Spo11、Rad52组、Dmc1、Mnd1、Msh4、Msh5、Mek1、Red1和Hop1参与了基因重组。Spo11是发现和研究得最早的启动基因重组的基因之一;Rec8、Spo13和Sgo1参与了染色体分裂的过程。 相似文献
6.
7.
8.
苹果酸降解相关基因在酿酒酵母中的表达 总被引:3,自引:0,他引:3
微生物降酸是现代葡萄酒酿造重要工艺。将裂殖酵母苹果酸通透酶基因(mae1)和苹果酸酶基因(mae2)克隆到酿酒酵母中,构建了苹果酸酒精酵母;将mae1基因和乳酸乳球菌的苹果酸乳酸酶基因(mleS)克隆到酿酒酵母中,构建了苹果酸乳酸酵母。构建的酵母重组子能够有效地分解发酵基质中的苹果酸。 相似文献
9.
In order to analyze the response of Saccharomyces cerevisiae to starvation on a gene expression level, microarray experiments were performed using a yeast whole genome array. It is well known that under stress conditions like heat, high salt concentrations, pressure or the presence of toxins, special stress response genes are induced in Saccharomyces cerevisiae. This includes the genes encoding the typical heat shock proteins as well as numerous genes concerning cell membrane composition, central carbon metabolism or cell cycle. In this contribution, the Saccharomyces cerevisiae starvation‐stress response is analyzed. Starvation is a living condition often experienced by yeast in natural surroundings. As Saccharomyces cerevisiae is an eukaryote, many results from the gene expression analysis are valid for mammalians as well. The understanding of response of the yeast to the absence of a nutrient is also important for the development of feeding strategies in cultivations. Therefore, knowledge about the gene expression during starvation is important for both research and industrial applications. The regulation of 233 genes, which are involved in the stress response according to the literature, was examined via microarray experiments. In addition, a screening was carried out identifying 115 genes, which are hitherto not known to be comprised in the stress response, but which were significantly up‐regulated during starvation. 相似文献
10.
11.
12.
13.
Robert P. Lawther Elaine Riemer Bonnie Chojnacki Terrance G. Cooper 《Journal of bacteriology》1974,119(2):461-468
We have shown that allantoin degradation in Saccharomyces cerevisiae proceeds exclusively through the intermediate formation of allantoic acid, urea, and allophanic acid. The number of reactions between allantoic acid and urea, however, remains obscure owing to our inability to isolate a mutant defective in ureidoglycolate hydrolase. Structural genes for the enzymes, allantoinase (dal1) and allantoicase (dal2) are located on chromosome IX promixal to the centromere in the order dal1-dal2-lysl. 相似文献
14.
Effects of Fusariotoxin T-2 on Saccharomyces cerevisiae and Saccharomyces carlsbergensis 总被引:4,自引:3,他引:1 下载免费PDF全文
A Fusarium metabolite, T-2 toxin, inhibits the growth of Saccharomyces carlsbergensis and Saccharomyces cerevisiae. The growth inhibitory concentrations of T-2 toxin were 40 and 100 μg/ml, respectively, for exponentially growing cultures of the two yeasts. S. carlsbergensis was more sensitive to the toxin and exhibited a biphasic dose-response curve. Addition of the toxin at 10 μg/ml of S. carlsbergensis culture resulted in a retardation of growth as measured turbidimetrically, after only 30 to 40 min. This action was reversible upon washing the cells free of the toxin. The sensitivity of the yeasts to the toxin was dependent upon the types and concentrations of carbohydrates used in the growth media. The sensitivity of the cells to the toxin decreased in glucose-repressed cultures. These results suggest that T-2 toxin interferes with mitochondrial functions of these yeasts. 相似文献
15.
The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property. 相似文献
16.
Genetic Order of the Galactose Structural Genes in Saccharomyces cerevisiae 总被引:16,自引:4,他引:12 下载免费PDF全文
The galactose structural genes of Saccharomyces cerevisiae were ordered by determining the genotypes of mitotic and meiotic recombinants from crosses heterozygous for the three genes. The most probable order is centromere-gal7-gal10-gal1. Nonreciprocal recombination was more frequent than reciprocal exchange, and both mitotic and meiotic co-conversions involving mutant sites in all three genes were observed. 相似文献
17.
The Saccharomyces cerevisiae kinase Sat4p has been originally identified as a protein involved in salt tolerance and stabilization of plasma membrane transporters, implicating a cytoplasmic localization. Our study revealed an additional mitochondrial (mt) localization, suggesting a dual function for Sat4p. While no mt related phenotype was observed in the absence of Sat4p, its overexpression resulted in significant changes of a specific mitochondrial subproteome. As shown by a comparative two dimensional difference gel electrophoresis (2D-DIGE) approach combined with mass spectrometry, particularly two groups of proteins were affected: the iron-sulfur containing aconitase-type proteins (Aco1p, Lys4p) and the lipoamide-containing subproteome (Lat1p, Kgd2p and Gcv3p). The lipoylation sites of all three proteins could be assigned by nanoLC-MS/MS to Lys75 (Lat1p), Lys114 (Kgd2p) and Lys102 (Gcv3p), respectively. Sat4p overexpression resulted in accumulation of the delipoylated protein variants and in reduced levels of aconitase-type proteins, accompanied by a decrease in the activities of the respective enzyme complexes. We propose a regulatory role of Sat4p in the late steps of the maturation of a specific subset of mitochondrial iron-sulfur cluster proteins, including Aco1p and lipoate synthase Lip5p. Impairment of the latter enzyme may account for the observed lipoylation defects. 相似文献
18.
19.
Angela L. Linderholm Carrie L. Findleton Gagandeep Kumar Yeun Hong Linda F. Bisson 《Applied microbiology》2008,74(5):1418-1427
A screen of the Saccharomyces cerevisiae deletion strain set was performed to identify genes affecting hydrogen sulfide (H2S) production. Mutants were screened using two assays: colony color on BiGGY agar, which detects the basal level of sulfite reductase activity, and production of H2S in a synthetic juice medium using lead acetate detection of free sulfide in the headspace. A total of 88 mutants produced darker colony colors than the parental strain, and 4 produced colonies significantly lighter in color. There was no correlation between the appearance of a dark colony color on BiGGY agar and H2S production in synthetic juice media. Sixteen null mutations were identified as leading to the production of increased levels of H2S in synthetic juice using the headspace analysis assay. All 16 mutants also produced H2S in actual juices. Five of these genes encode proteins involved in sulfur containing amino acid or precursor biosynthesis and are directly associated with the sulfate assimilation pathway. The remaining genes encode proteins involved in a variety of cellular activities, including cell membrane integrity, cell energy regulation and balance, or other metabolic functions. The levels of hydrogen sulfide production of each of the 16 strains varied in response to nutritional conditions. In most cases, creation of multiple deletions of the 16 mutations in the same strain did not lead to a further increase in H2S production, instead often resulting in decreased levels. 相似文献
20.
谷胱甘肽S-转移酶Zeta类基因在酿酒酵母中的表达 总被引:1,自引:0,他引:1
谷胱甘肽S-转移酶Zeta类基因在酿酒酵母中的表达 贾向东1,陈喜文1,陈德富1,陈洁2 (1.南开大学生命科学学院,生物活性材料教育部重点实验室,天津300071;2.湖南怀化市铁路第一中学,怀化418000) 摘要:谷胱甘肽S-转移酶Zeta类(GSTZ)是一种重要的多功能酶,与细胞生化代谢、环境净化等密切相关。将拟南芥、甘蓝型油菜品系陕2B与垦C1的GSTZ基因克隆到大肠杆菌—酿酒酵母穿梭表达载体pYES2的多克隆位点,筛选到重组子后,提取重组质粒并将其转入酿酒酵母营养缺陷型菌株INCSc1细胞中,经SC-U培养基选择得到重组酵母Y2At、Y2BnB和Y2BnC。重组酵母在含棉子糖和半乳糖的诱导培养基中,表达出了具有二氯乙酸脱氯活力的谷胱甘肽S-转移酶Zeta类,且主要以可溶状态存在于酵母细胞中。不同碳源比较发现,使用半乳糖为唯一碳源时,与棉子糖和半乳糖共同使用相比,酵母生长虽受到轻微影响,但表达的GSTZ比活力几乎不受任何影响。0~96h诱导时间的优化实验表明,36h诱导下呈现最高比活力。同时也对不同GSTZ的Km值进行了比较。 相似文献