首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells.  相似文献   

2.
Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM) tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM), such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80° thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL) conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters.  相似文献   

3.
The recent development for in situ transmission electron microscopy, which allows imaging through liquids with high spatial resolution, has attracted significant interests across the research fields of materials science, physics, chemistry and biology. The key enabling technology is a liquid cell. We fabricate liquid cells with thin viewing windows through a sequential microfabrication process, including silicon nitride membrane deposition, photolithographic patterning, wafer etching, cell bonding, etc. A liquid cell with the dimensions of a regular TEM grid can fit in any standard TEM sample holder. About 100 nanoliters reaction solution is loaded into the reservoirs and about 30 picoliters liquid is drawn into the viewing windows by capillary force. Subsequently, the cell is sealed and loaded into a microscope for in situ imaging. Inside the TEM, the electron beam goes through the thin liquid layer sandwiched between two silicon nitride membranes. Dynamic processes of nanoparticles in liquids, such as nucleation and growth of nanocrystals, diffusion and assembly of nanoparticles, etc., have been imaged in real time with sub-nanometer resolution. We have also applied this method to other research areas, e.g., imaging proteins in water. Liquid cell TEM is poised to play a major role in revealing dynamic processes of materials in their working environments. It may also bring high impact in the study of biological processes in their native environment.  相似文献   

4.
We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells.  相似文献   

5.
Labeling with heavy atom clusters attached to antibody fragments is an attractive technique for determining the 3D distribution of specific proteins in cells using electron tomography. However, the small size of the labels makes them very difficult to detect by conventional bright-field electron tomography. Here, we evaluate quantitative scanning transmission electron microscopy (STEM) at a beam voltage of 300 kV for detecting 11-gold atom clusters (Undecagold) and 1.4 nm-diameter nanoparticles (Nanogold) for a variety of specimens and imaging conditions. STEM images as well as tomographic tilt series are simulated by means of the NIST Elastic-Scattering Cross-Section Database for gold clusters embedded in carbon. The simulations indicate that the visibility in 2D of Undecagold clusters in a homogeneous matrix is maximized for low inner collection semi-angles of the STEM annular dark-field detector (15–20 mrad). Furthermore, our calculations show that the visibility of Undecagold in 3D reconstructions is significantly higher than in 2D images for an inhomogeneous matrix corresponding to fluctuations in local density. The measurements demonstrate that it is possible to detect Nanogold particles in plastic sections of tissue freeze-substituted in the presence of osmium. STEM tomography has the potential to localize specific proteins in permeabilized cells using antibody fragments tagged with small heavy atom clusters. Our quantitative analysis provides a framework for determining the detection limits and optimal experimental conditions for localizing these small clusters.  相似文献   

6.
Labeling with heavy atom clusters attached to antibody fragments is an attractive technique for determining the 3D distribution of specific proteins in cells using electron tomography. However, the small size of the labels makes them very difficult to detect by conventional bright-field electron tomography. Here, we evaluate quantitative scanning transmission electron microscopy (STEM) at a beam voltage of 300 kV for detecting 11-gold atom clusters (Undecagold) and 1.4 nm-diameter nanoparticles (Nanogold) for a variety of specimens and imaging conditions. STEM images as well as tomographic tilt series are simulated by means of the NIST Elastic-Scattering Cross-Section Database for gold clusters embedded in carbon. The simulations indicate that the visibility in 2D of Undecagold clusters in a homogeneous matrix is maximized for low inner collection semi-angles of the STEM annular dark-field detector (15–20 mrad). Furthermore, our calculations show that the visibility of Undecagold in 3D reconstructions is significantly higher than in 2D images for an inhomogeneous matrix corresponding to fluctuations in local density. The measurements demonstrate that it is possible to detect Nanogold particles in plastic sections of tissue freeze-substituted in the presence of osmium. STEM tomography has the potential to localize specific proteins in permeabilized cells using antibody fragments tagged with small heavy atom clusters. Our quantitative analysis provides a framework for determining the detection limits and optimal experimental conditions for localizing these small clusters.  相似文献   

7.
The absence of imaging lenses after the specimen in the scanning transmission electron microscope (STEM) enables electron tomography to be performed in the STEM mode on micrometer-thick plastic-embedded specimens without the deleterious effect of chromatic aberration, which limits spatial resolution and signal-to-noise ratio in conventional TEM. Using Monte Carlo calculations to simulate electron scattering from gold nanoparticles situated at the top and bottom surfaces of a plastic section, we assess the optimal acquisition strategy for axial bright-field STEM electron tomography at a beam-energy of 300keV. Dual tilt-axis STEM tomography with optimized axial bight-field detector geometry is demonstrated by application to micrometer-thick sections of beta cells from mouse pancreatic islet. The quality of the resulting three-dimensional reconstructions is comparable to that obtained from much thinner (0.3-micrometer) sections using conventional TEM tomography. The increased range of specimen thickness accessible to axial STEM tomography without the need for serial sectioning enables the 3-D visualization of more complex and larger subcellular structures.  相似文献   

8.
Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated 1-3. However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated 4-7. However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot 8-10. We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.  相似文献   

9.
The size and morphology determines the thermodynamic, physical and electronic properties of metal nanoparticles. The extracellular synthesis of gold nanoparticles by fungus, Cylindrocladium floridanum, which acts as a source of reducing and stabilizing agent has been described. The synthesized nanoparticles were characterized using techniques such as UV–Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis (EDAX), and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical with an average size of 19.05 nm. Powder XRD pattern proved the formation of (111)-oriented face-centered cubic crystals of metallic gold. This microbial approach by fungus for the green synthesis of spherical gold nanoparticles has many advantages such as economic viability, scaling up and environment friendliness.  相似文献   

10.
Gold nanoparticles have enormous applications in cancer treatment, drug delivery and nanobiosensor due to their biocompatibility. Biological route of synthesis of metal nanoparticles are cost effective and eco-friendly. Acinetobacter sp. SW 30 isolated from activated sewage sludge produced cell bound as well as intracellular gold nanoparticles when challenged with HAuCl4 salt solution. We first time report the optimization of various physiological parameters such as age of culture, cell density and physicochemical parameters viz HAuCl4 concentration, temperature and pH which influence the synthesis of gold nanoparticles. Gold nanoparticles thus produced were characterized by various analytical techniques viz. UV–Visible spectroscopy, X-ray diffraction, cyclic voltammetry, transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and dynamic light scattering. Polyhedral gold nanoparticles of size 20 ± 10 nm were synthesized by 24 h grown culture of cell density 2.4 × 109 cfu/ml at 50 °C and pH 9 in 0.5 mM HAuCl4. It was found that most of the gold nanoparticles were released into solution from bacterial cell surface of Acinetobacter sp. at pH 9 and 50 °C.  相似文献   

11.
This review attempts a physical definition of the technical problems and achievements in applying the high-voltage electron microscope (HVEM) to biological and medical research. It is hoped that the review will summarize for biologists, funding agencies, and institutions the achievements of the HVEM, its future prospects, and the main problem areas that still need to be explored. At present it is not known whether future HVEMs will favor the fixed beam or the scanning transmission electron microscopy (STEM) mode. The STEM mode offers reduced radiation damage as a result of more efficient electron detection and ease of manipulation of the collected signals by separating the elastic and inelastic signals. Energy filtration to remove the inelastic signal provides a means to enhance the contrast and improve the resolution for thick specimens. Several prototype STEM-mode HVEMs are now under development and it is expected that, in a few years, comparisons of fixed beam and STEM modes will be possible. The review discusses several HVEM instrument features that remain poorly developed. In the area of image recording a photographic emulsion has been designed to give optimized performance at an acceleration voltage of 1 MV. However, this remains unavailable commercially. Conversion of the HVEM electron image to a usable light image by phosphors etc., involves some difficulties, making it difficult to obtain good performance from TV systems. Since the HVEM is particularly useful for three-dimensional imaging, the further development of improved goniometers for stereo viewing and image reconstruction is important. The large volume available in the objective specimen volume and the increased penetration at high acceleration voltages make the HVEM particularly suitable for the application of environmental chambers in the microscopy and electron diffraction of thick wet specimens. An improved signal-to-noise ratio improves the prospects for elemental analysis at high acceleration voltages. When carefully carried out, improved resolution can be obtained in dark-field over that obtainable at 100 kV. Dark-field provides the easiest way to obtain high contrast on weakly stained or unstained objects. Its further improvement requires the use of specially thick and shaped beam stops and apertures that are not penetrated by the 1 MV beam. Recent HVEM studies of whole cells and microorganisms are reviewed. These studies already show that the former thin-section approach led to some incorrect ideas about the shape of some organelles and their three-dimensional relationships. This new information is proving important in helping to establish the function of fibrillar and membranous components of the cell. The most important limitation in examining thick sections is the large depth of field that causes excessive overlap of in-focus structures in stereo views of thick sections. In a few cases special specific heavy metal stains have been developed to overcome this problem, but an optical solution would be more generally applicable. Attempts are now being made to unscramble overlapped detail by applying the image reconstruction techniques of tomography and holography. It is concluded that even with existing techniques, the HVEM examination of thick sections provides a very useful improvement in sampling statistics and in three-dimensional imaging of cell structures over that obtainable by examining thin sections at a lower acceleration voltage (100 kV). Randomized author sequence.  相似文献   

12.
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context.  相似文献   

13.
Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction.Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm.Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed.  相似文献   

14.
The lipids and proteins in eukaryotic cells are continuously exchanged between cell compartments, although these retain their distinctive composition and functions despite the intense interorganelle molecular traffic. The techniques described in this paper are powerful means of studying protein and lipid mobility and trafficking in vivo and in their physiological environment. Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are widely used live-cell imaging techniques for studying intracellular trafficking through the exo-endocytic pathway, the continuity between organelles or subcompartments, the formation of protein complexes, and protein localization in lipid microdomains, all of which can be observed under physiological and pathological conditions. The limitations of these approaches are mainly due to the use of fluorescent fusion proteins, and their potential drawbacks include artifactual over-expression in cells and the possibility of differences in the folding and localization of tagged and native proteins. Finally, as the limit of resolution of optical microscopy (about 200 nm) does not allow investigation of the fine structure of the ER or the specific subcompartments that can originate in cells under stress (i.e. hypoxia, drug administration, the over-expression of transmembrane ER resident proteins) or under pathological conditions, we combine live-cell imaging of cultured transfected cells with ultrastructural analyses based on transmission electron microscopy.  相似文献   

15.
This paper proposes a method for diagnosing intracellular conditions and organelles of cells with localized surface plasmonic resonance (LSPR) by directly internalizing the gold nanoparticles (AuNPs) into the cells and measuring their plasmonic properties through hyperspectral imaging. This technique will be useful for direct diagnosis of cellular organelles, which have potential for cellular biology, proteomics, pharmaceuticals, drug discovery etc. Furthermore, localization and characterization of citrate-capped gold nanoparticles in HeLa cells were studied, by hyperspectral microscopy and other imaging techniques. Here, we present the method of internalizing the gold nanoparticles into the cells and subcellular organelles to facilitate subcellular plasmonic measurements. An advanced label-free visualization technique, namely hyperspectral microscopy providing images and spectral data simultaneously, was used to confirm the internalization of gold nanoparticles and to reveal their optical properties for possible intracellular plasmonic detection. Hyperspectral technology has proved to be effective in the analysis of the spectral profile of gold nanoparticles, internalized under different conditions. Using this relatively novel technique, it is possible to study the plasmonic properties of particles, localized in different parts of the cell. The position of the plasmon bands reflects the interactions of gold nanoparticles with different subcellular systems, including particle-nucleus interactions. Our results revealed the effect of the different intracellular interactions on the aggregation pattern of gold nanoparticles, inside the cells. This novel technique opens the door to intracellular plasmonics, an entirely new field, with important potential applications in life sciences. Similarly, the characterization of AuNP inside the cell was validated using traditional methods such as light microscopy and scanning electron microscopy. Under the conditions studied in this work, gold nanoparticles were found to be non-toxic to HeLa (cervical cancer) cells.  相似文献   

16.
Summary Video-enhanced microscopy allows the detection and tracking of individual colloidal gold particles. The analysis of immunogold reactions can also be conducted as a function of time and thus allows the study of dynamic events in living cells. The direct visualization in real time is reported of the reaction of immunogold particles with a surface antigen. This time-resolved immunocytochemistry was achieved by continuous observation of living cells infected with a virus (respiratory syncytial virus) following their incubation with colloidal gold (30 nm) coated with antiviral antibodies. The progress of the immunoreaction was visualized as a sequential deposition of individual gold granules on the viral particles until saturation was reached after 60 min. Binding of colloidal gold was an irreversible event as no elution or dislocation of surface-bound granules took place. Comparative imaging of colloidal gold particles by electron microscopy and by video microscopy demonstrated that the video-imaged immunoreactions represented events involving single gold particles; their signal was sometimes clearly enhanced by secondary depositions taking place in close proximity, i.e. at a distance below the lateral resolution of the light microscope. Our experiments demonstrate that video-enhanced microscopy provides a powerful tool for studying antibody-antigen reactions with a high spatial and temporal resolution.  相似文献   

17.
Video-enhanced microscopy allows the detection and tracking of individual colloidal gold particles. The analysis of immunogold reactions can also be conducted as a function of time and thus allows the study of dynamic events in living cells. The direct visualization in real time is reported of the reaction of immunogold particles with a surface antigen. This time-resolved immunocytochemistry was achieved by continuous observation of living cells infected with a virus (respiratory syncytial virus) following their incubation with colloidal gold (30 nm) coated with antiviral antibodies. The progress of the immunoreaction was visualized as a sequential deposition of individual gold granules on the viral particles until saturation was reached after 60 min. Binding of colloidal gold was an irreversible event as no elution or dislocation of surface-bound granules took place. Comparative imaging of colloidal gold particles by electron microscopy and by video microscopy demonstrated that the video-imaged immunoreactions represented events involving single gold particles; their signal was sometimes clearly enhanced by secondary depositions taking place in close proximity, i.e. at a distance below the lateral resolution of the light microscope. Our experiments demonstrate that video-enhanced microscopy provides a powerful tool for studying antibody-antigen reactions with a high spatial and temporal resolution.  相似文献   

18.
We describe a method based on fluorescence in situ hybridisation (FISH) that allows the identification of individual cells by electron microscopy. We hybridised universal and specific fluorescein-labelled oligonucleotide probes to the ribosomal RNA of prokaryotic microorganisms in heterogeneous cell mixtures. We then used antibodies against fluorescein coupled to sub-nanometer gold particles to label the hybridised probes in the ribosome. After increasing the diameter of the metal particles by silver enhancement, the specific gold-silver signal was visualised by optical microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is the first time that SEM is applied to the detection of gold nanoparticles hybridised to an intracellular target, such as the ribosome. The possibility to couple phylogenetic identification by FISH to cell surface and ultrastructure observation at electron microscopy resolution has promising potential applications in microbial ecology.  相似文献   

19.
This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.  相似文献   

20.
More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell's interior are lagging behind. We describe an approach, metal-tagging TEM (METTEM), that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity, and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号