首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe the effect on the population of Eubacteria and Archaea species of adding the endocrine-disrupting chemicals (EDCs) nonylphenol (NP) or dibutylphthalate (DBP) to a typical paddy soil. Fluorescence in-situ hybridization was used to discriminate between the two phyla, and denaturing gradient gel electrophoresis (DGGE) of an amplified fragment of the 16S rRNA locus was used to profile the species present. The population of both Eubacteria and Archaea species was reduced by the presence of NP or DBP, and the deleterious effect was greater for the Eubacteria. The DGGE profiles were used to assess the species diversity in the polluted and non-polluted soil samples. This showed that DBP was less damaging than NP50. It was clear that EDCs can significantly affect paddy soil microbial diversity, both with respect to population size and species representation.  相似文献   

2.
3.
Minerals constitute an ecological niche poorly investigated in the soil, in spite of their important role in biogeochemical cycles and plant nutrition. To evaluate the impact of minerals on the structure of the soil bacterial communities, we compared the bacterial diversity on mineral surfaces and in the surrounding soil. Three pure and calibrated minerals (apatite, plagioclase and a mix of phlogopite-quartz) were buried into the organo-mineral layer of a forest soil. After a 4-year incubation in soil conditions, mineral weathering and microbial colonization were evaluated. Apatite and plagioclase were the only two significantly weathered minerals. The analysis of the 16S rRNA gene sequences generated by the cloning-sequencing procedure revealed that bacterial diversity was higher in the surrounding soil and on the unweathered phlogopite-quartz samples compared with the other minerals. Moreover, a multivariate analysis based on the relative abundance of the main taxonomic groups in each compartments of origin demonstrated that the bacterial communities from the bulk soil differed from that colonizing the minerals. A significant correlation was obtained between the dissolution rate of the minerals and the relative abundance of Beta-proteobacteria detected. Notably, many sequences coming from bacteria colonizing the mineral surfaces, whatever the mineral, harbored high similarity with efficient mineral weathering bacteria belonging to Burkholderia and Collimonas genera, previously isolated on the same experimental site. Taken together, the present results provide new highlights concerning the bacterial communities colonizing minerals surfaces in the soil and suggests that the minerals create true ecological niches: the mineralosphere.  相似文献   

4.
To date, several bacterial species have been described as mineral-weathering agents which improve plant nutrition and growth. However, the possible relationships between mineral-weathering potential, taxonomic identity, and metabolic ability have not been investigated thus far. In this study, we characterized a collection of 61 bacterial strains isolated from Scleroderma citrinum mycorrhizae, the mycorrhizosphere, and the adjacent bulk soil in an oak forest. The ability of bacteria to weather biotite was assessed with a new microplate bioassay that measures the pH and the quantity of iron released from this mineral. We showed that weathering bacteria occurred more frequently in the vicinity of S. citrinum than in the bulk soil. Moreover, the weathering efficacy of the mycorrhizosphere bacterial isolates was significantly greater than that of the bulk soil isolates. All the bacterial isolates were identified by partial 16S rRNA gene sequence analysis as members of the genera Burkholderia, Collimonas, Pseudomonas, and Sphingomonas, and their carbon metabolism was characterized by the BIOLOG method. The most efficient isolates belonged to the genera Burkholderia and Collimonas. Multivariate analysis resulted in identification of three metabolic groups, one of which contained mainly bacterial isolates associated with S. citrinum and exhibiting high mineral-weathering potential. Therefore, our results support the hypothesis that by its carbon metabolism this fungus selects in the bulk soil reservoir a bacterial community with high weathering potential, and they also address the question of functional complementation between mycorrhizal fungi and bacteria in the ectomycorrhizal complex for the promotion of tree nutrition.  相似文献   

5.
6.
In arctic glacier moraines, bioweathering primed by microbial iron oxidizers creates fertility gradients that accelerate soil development and plant establishment. With the aim of investigating the change of bacterial diversity in a pyrite-weathered gradient, we analyzed the composition of the bacterial communities involved in the process by sequencing 16S rRNA gene libraries from different biological soil crusts (BSC). Bacterial communities in three BSC of different morphology, located within 1 m distance downstream a pyritic conglomerate rock, were significantly diverse. The glacier moraine surrounding the weathered site showed wide phylogenetic diversity and high evenness with 15 represented bacterial classes, dominated by Alphaproteobacteria and pioneer Cyanobacteria colonizers. The bioweathered area showed the lowest diversity indexes and only nine bacterial families, largely dominated by Acidobacteriaceae and Acetobacteraceae typical of acidic environments, in accordance with the low pH of the BSC. In the weathered BSC, iron-oxidizing bacteria were cultivated, with counts decreasing along with the increase of distance from the rock, and nutrient release from the rock was revealed by environmental scanning electron microscopy-energy dispersive X-ray analyses. The vegetated area showed the presence of Actinomycetales, Verrucomicrobiales, Gemmatimonadales, Burkholderiales, and Rhizobiales, denoting a bacterial community typical of developed soils and indicating that the lithoid substrate of the bare moraine was here subjected to an accelerated colonization, driven by iron-oxidizing activity.  相似文献   

7.
Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches.  相似文献   

8.
Surveys of the coxL gene, encoding the large subunit of the CO dehydrogenase, are used as a standard approach in ecological studies of carboxydovore bacteria scavenging atmospheric CO. Recent soil surveys unveiled that the distribution of coxL sequences encompassing the atypical genotype coxL type I group x was correlated to the CO oxidation activity. Based on phylogenetic analysis including the available coxL reference genome sequences, this unusual genotype was assigned to an unknown member of the Deltaproteobacteria, with the coxL sequence from Haliangium ochraceum being the sole and closest reference sequence. Here we seek to challenge the proposed taxonomic assignation of the coxL group x genotype through the monitoring of CO consumption activity and microbial community successions during the colonization of sterile soil microcosms inoculated with indigenous microorganisms. In our study, we established that the estimated population density of Deltaproteobacteria was too small to account for the abundance of the coxL group x genotype detected in soil. Furthermore, we computed a correlation network to relate 16S rRNA gene profiles with the succession of coxL genotypes and CO uptake activity in soil. We found that most of the coxL genotypes for which the colonization profile displayed covariance with CO uptake activity were related to potential carboxydovore bacteria belonging to Actinobacteria and Alphaproteobacteria. Our analysis did not provide any evidence that coxL group x genotypes belonged to Deltaproteobacteria. Considering the colonization profile of CO-oxidizing bacteria and the theoretical energy yield of measured CO oxidation rates in soil microcosms, we propose that unknown carboxydovore bacteria harboring the atypical coxL group x genotype are mixotrophic K-strategists.  相似文献   

9.
Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires) and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs) experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion). The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have important implications for both managed and natural grassland ecosystems.  相似文献   

10.
Tikhonova  E. N.  Men’ko  E. V.  Ulanova  R. V.  Li  H.  Kravchenko  I. K. 《Microbiology》2019,88(6):781-785
Microbiology - Effect of temperature on succession changes of the saprotrophic bacterial community of gray forest soil in the course of decomposition of aspen leaves and branches was studied in...  相似文献   

11.
12.
13.
In this study, we used denaturing gradient gel electrophoresis (DGGE) and culture-dependent methodology to characterize bacterial populations and mineral-dissolving bacteria in a mineral-rich soil profile. DGGE and sequencing revealed 13 known bacterial families and 7 unknown populations for the soil profile. Seventy-one isolates could solubilize feldspar. Weathering effectiveness and pattern of the isolates differed among the horizons. The 71 mineral-dissolving isolates were affiliated with 32 bacterial species within 14 genera, among which Bacillus, Burkholderia, and Arthrobacter were dominant. Distinct mineral-dissolving populations were observed between the surface and subsurface horizons. Notably, the deepest horizon showed maximum diversity of the mineral-dissolving bacteria. Furthermore, a significantly higher proportion of the high efficiency mineral-dissolving bacteria was observed in the deeper horizons than in the upper horizons. The results suggested that the soil profile harboured diverse mineral-dissolving populations and the dissolving potential and pattern and the community of the mineral-dissolving bacteria changed with depth.  相似文献   

14.
Alpha and beta diversities of the bacterial communities growing on rock surfaces, proto-soils, riparian sediments, lichen thalli, and water springs biofilms in a glacier foreland were studied. We used three molecular based techniques to allow a deeper investigation at different taxonomic resolutions: denaturing gradient gel electrophoresis, length heterogeneity-PCR, and automated ribosomal intergenic spacer analysis. Bacterial communities were mainly composed of Acidobacteria, Proteobacteria, and Cyanobacteria with distinct variations among sites. Proteobacteria were more represented in sediments, biofilms, and lichens; Acidobacteria were mostly found in proto-soils; and Cyanobacteria on rocks. Firmicutes and Bacteroidetes were mainly found in biofilms. UniFrac P values confirmed a significant difference among different matrices. Significant differences (P < 0.001) in beta diversity were observed among the different matrices at the genus–species level, except for lichens and rocks which shared a more similar community structure, while at deep taxonomic resolution two distinct bacterial communities between lichens and rocks were found.  相似文献   

15.
In soils, bacteria are very abundant and diverse. They are involved in various agro-ecosystem processes such as the nitrogen cycle, organic matter degradation, and soil formation. Yet, little is known about the distribution and composition of bacterial communities through the soil profile, particularly in agricultural soils, as most studies have focused only on topsoils or forest and grassland soils. In the present work, we have used bar-coded pyrosequencing analysis of the V3 region of the 16S rRNA gene to analyze bacterial diversity in a profile (depths 10, 25, and 45 cm) of a well-characterized field of winter wheat. Taxonomic assignment was carried out with the Ribosomal Database Project (RDP) Classifier program with three bootstrap scores: a main run at 0.80, a confirmation run at 0.99, and a run at 0 to gain information on the unknown bacteria. Our results show that biomass and bacterial quantity and diversity decreased greatly with depth. Depth also had an impact, in terms of relative sequence abundance, on 81 % of the most represented taxonomic ranks, notably the ranks Proteobacteria, Bacteroidetes, Actinobacteridae, and Acidobacteria. Bacterial community composition differed more strongly between the topsoil (10 and 25 cm) and subsoil (45 cm) than between levels in the topsoil, mainly because of shifts in the carbon, nitrogen, and potassium contents. The subsoil also contained more unknown bacteria, 53.96 % on the average, than did the topsoil, with 42.06 % at 10 cm and 45.59 % at 25 cm. Most of these unknown bacteria seem to belong to Deltaproteobacteria, Actinobacteria, Rhizobiales, and Acidobacteria.  相似文献   

16.
The Brazilian Savanna, also known as “Cerrado”, is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.  相似文献   

17.
Interactions between corals and associated bacteria and amongst these bacterial groups are likely to play a key role in coral health. However, the complexity of these interactions is poorly understood. We investigated the functional role of specific coral-associated bacteria in maintaining microbial communities on the coral Acropora millepora (Ehrenberg 1834) and the ability of coral mucus to support or inhibit bacterial growth. Culture-independent techniques were used to assess bacterial community structures whilst bacterial culture was employed to assess intra- and inter-specific antimicrobial activities of bacteria. Members of Pseudoalteromonas and ribotypes closely related to Vibrio coralliilyticus displayed potent antimicrobial activity against a range of other cultured isolates and grew readily on detached coral mucus. Although such bacterial ribotypes would be expected to have a competitive advantage, they were rare or absent on intact and healthy coral colonies growing in situ (analysed using denaturing gradient gel electrophoresis and 16S rRNA gene sequencing). The most abundant bacterial ribotypes found on healthy corals were Gammaproteobacteria, previously defined as type A coral associates. Our results indicate that this group of bacteria and specific members of the Alphaproteobacteria described here as ‘type B associates’ may be important functional groups for coral health. We suggest that bacterial communities on coral are kept in check by a combination of host-derived and microbial interactions and that the type A associates in particular may play a key role in maintaining stability of microbial communities on healthy coral colonies.  相似文献   

18.
This study reports on the factors involved in regulating the composition and structure of bacterial communities epiphytic on intertidal macroalgae, exploring their temporal variability and the role of copper pollution. Culture-independent, molecular approaches were chosen for this purpose and three host species were used as models: the ephemeral Ulva spp. (Chlorophyceae) and Scytosiphon lomentaria (Phaeophyceae) and the long-living Lessonia nigrescens (Phaeophyceae). The algae were collected from two coastal areas in Northern Chile, where the main contrast was the concentration of copper in the seawater column resulting from copper-mine waste disposals. We found a clear and strong effect in the structure of the bacterial communities associated with the algal species serving as host. The structure of the bacterial communities also varied through time. The effect of copper on the structure of the epiphytic bacterial communities was significant in Ulva spp., but not on L. nigrescens. The use of 16S rRNA gene library analysis to compare bacterial communities in Ulva revealed that they were composed of five phyla and six classes, with approximately 35 bacterial species, dominated by members of Bacteroidetes (Cytophaga-Flavobacteria-Bacteroides) and α-Proteobacteria, in both non-polluted and polluted sites. Less common groups, such as the Verrucomicrobiae, were exclusively found in polluted sites. This work shows that the structure of bacterial communities epiphytic on macroalgae is hierarchically determined by algal species > temporal changes > copper levels.  相似文献   

19.
The effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-automated ribosomal intergenic spacer analysis of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed the difference of composition of the bacterial community according to the location. Bacteria belonging to the γ-subgroup of proteobacteria were stimulated when residues were incorporated whereas the α-subgroup was stimulated when residues were left at the soil surface. Moreover, Actinobacteria were more represented when residues were left at the soil surface. According to the ecological attributes of the populations identified, our results suggested that climatic fluctuations at the soil surface select populations harboring enhanced catabolic and/or survival capacities whereas residues characteristics likely constitute the main determinant of the composition of the bacterial community colonizing incorporated residues.  相似文献   

20.
The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号