首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zhang Y  Mao L  Wang H  Brocker C  Yin X  Vasiliou V  Fei Z  Wang X 《PloS one》2012,7(2):e32153

Background

The completion of the grape genome sequencing project has paved the way for novel gene discovery and functional analysis. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of endogenous and exogenous aromatic and aliphatic aldehydes. Although ALDHs have been systematically investigated in several plant species including Arabidopsis and rice, our knowledge concerning the ALDH genes, their evolutionary relationship and expression patterns in grape has been limited.

Methodology/Principal Findings

A total of 23 ALDH genes were identified in the grape genome and grouped into ten families according to the unified nomenclature system developed by the ALDH Gene Nomenclature Committee (AGNC). Members within the same grape ALDH families possess nearly identical exon-intron structures. Evolutionary analysis indicates that both segmental and tandem duplication events have contributed significantly to the expansion of grape ALDH genes. Phylogenetic analysis of ALDH protein sequences from seven plant species indicates that grape ALDHs are more closely related to those of Arabidopsis. In addition, synteny analysis between grape and Arabidopsis shows that homologs of a number of grape ALDHs are found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the speciation of the grape and Arabidopsis. Microarray gene expression analysis revealed large number of grape ALDH genes responsive to drought or salt stress. Furthermore, we found a number of ALDH genes showed significantly changed expressions in responses to infection with different pathogens and during grape berry development, suggesting novel roles of ALDH genes in plant-pathogen interactions and berry development.

Conclusion

The genome-wide identification, evolutionary and expression analysis of grape ALDH genes should facilitate research in this gene family and provide new insights regarding their evolution history and functional roles in plant stress tolerance.  相似文献   

3.

Background

Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication.

Results

The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases.

Conclusions

The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-548) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Eukaryotic family A DNA polymerases are involved in mitochondrial DNA replication or translesion DNA synthesis. Here, we present evidence that the sole family A DNA polymerase from the parasite protozoan E. histolytica (EhDNApolA) localizes to the nucleus and that its biochemical properties indicate that this DNA polymerase may be involved in translesion DNA synthesis.

Methodology and Results

EhDNApolA is the sole family A DNA polymerase in E. histolytica. An in silico analysis places family A DNA polymerases from the genus Entamoeba in a separate branch of a family A DNA polymerases phylogenetic tree. Biochemical studies of a purified recombinant EhDNApolA demonstrated that this polymerase is active in primer elongation, is poorly processive, displays moderate strand displacement, and does not contain 3′–5′ exonuclease or editing activity. Importantly, EhDNApolA bypasses thymine glycol lesions with high fidelity, and confocal microscopy demonstrates that this polymerase is translocated into the nucleus. These data suggest a putative role of EhDNApolA in translesion DNA synthesis in E. histolytica.

Conclusion

This is the first report of the biochemical characterization of a DNA polymerase from E. histolytica. EhDNApolA is a family A DNA polymerase that is grouped into a new subfamily of DNA polymerases with translesion DNA synthesis capabilities similar to DNA polymerases from subfamily ν.  相似文献   

5.
Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape   总被引:2,自引:0,他引:2  

Background

The TIFY gene family constitutes a plant-specific group of genes with a broad range of functions. This family encodes four subfamilies of proteins, including ZML, TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. JAZ proteins are targets of the SCFCOI1 complex, and function as negative regulators in the JA signaling pathway. Recently, it has been reported in both Arabidopsis and rice that TIFY genes, and especially JAZ genes, may be involved in plant defense against insect feeding, wounding, pathogens and abiotic stresses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant TIFY family members is limited, especially in a woody species such as grape.

Methodology/Principal Findings

A total of two TIFY, four ZML, two PPD and 11 JAZ genes were identified in the Vitis vinifera genome. Phylogenetic analysis of TIFY protein sequences from grape, Arabidopsis and rice indicated that the grape TIFY proteins are more closely related to those of Arabidopsis than those of rice. Both segmental and tandem duplication events have been major contributors to the expansion of the grape TIFY family. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologues of several grape TIFY genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of lineages that led to grape and Arabidopsis. Analyses of microarray and quantitative real-time RT-PCR expression data revealed that grape TIFY genes are not a major player in the defense against biotrophic pathogens or viruses. However, many of these genes were responsive to JA and ABA, but not SA or ET.

Conclusion

The genome-wide identification, evolutionary and expression analyses of grape TIFY genes should facilitate further research of this gene family and provide new insights regarding their evolutionary history and regulatory control.  相似文献   

6.
7.

Background

Phospholipase A (PLA) is an important group of enzymes responsible for phospholipid hydrolysis in lipid signaling. PLAs have been implicated in abiotic stress signaling and developmental events in various plants species. Genome-wide analysis of PLA superfamily has been carried out in dicot plant Arabidopsis. A comprehensive genome-wide analysis of PLAs has not been presented yet in crop plant rice.

Methodology/Principal Findings

A comprehensive bioinformatics analysis identified a total of 31 PLA encoding genes in the rice genome, which are divided into three classes; phospholipase A1 (PLA1), patatin like phospholipases (pPLA) and low molecular weight secretory phospholipase A2 (sPLA2) based on their sequences and phylogeny. A subset of 10 rice PLAs exhibited chromosomal duplication, emphasizing the role of duplication in the expansion of this gene family in rice. Microarray expression profiling revealed a number of PLA members expressing differentially and significantly under abiotic stresses and reproductive development. Comparative expression analysis with Arabidopsis PLAs revealed a high degree of functional conservation between the orthologs in two plant species, which also indicated the vital role of PLAs in stress signaling and plant development across different plant species. Moreover, sub-cellular localization of a few candidates suggests their differential localization and functional role in the lipid signaling.

Conclusion/Significance

The comprehensive analysis and expression profiling would provide a critical platform for the functional characterization of the candidate PLA genes in crop plants.  相似文献   

8.
9.
10.
11.

Background

Amino acid transporters (AATs) that transport amino acids across cellular membranes are essential for plant growth and development. To date, a genome-wide overview of the AAT gene family in rice is not yet available.

Methodology/Principal Findings

In this study, a total of 85 AAT genes were identified in rice genome and were classified into eleven distinct subfamilies based upon their sequence composition and phylogenetic relationship. A large number of OsAAT genes were expanded via gene duplication, 23 and 24 OsAAT genes were tandemly and segmentally duplicated, respectively. Comprehensive analyses were performed to investigate the expression profiles of OsAAT genes in various stages of vegetative and reproductive development by using data from EST, Microarrays, MPSS and Real-time PCR. Many OsAAT genes exhibited abundant and tissue-specific expression patterns. Moreover, 21 OsAAT genes were found to be differentially expressed under the treatments of abiotic stresses. Comparative analysis indicates that 26 AAT genes with close evolutionary relationships between rice and Arabidopsis exhibited similar expression patterns.

Conclusions/Significance

This study will facilitate further studies on OsAAT family and provide useful clues for functional validation of OsAATs.  相似文献   

12.

Background

The predominant sterol in the membranes of the alga Chlamydomonas reinhardtii is ergosterol, which is commonly found in the membranes of fungi, but is rarely found in higher plants. Higher plants and fungi synthesize sterols by different pathways, with plants producing cycloartenol as a precursor to end-product sterols, while non-photosynthesizing organisms like yeast and humans produce lanosterol as a precursor. Analysis of the C. reinhardtii genome sequence reveals that this algae is also likely to synthesize sterols using a pathway resembling the higher plant pathway, indicating that its sterols are synthesized somewhat differently than in fungi. The work presented here seeks to establish experimental evidence to support the annotated molecular function of one of the sterol biosynthetic genes in the Chlamydomonas genome.

Methodology/Principal Findings

A gene with homology to the yeast sterol C-5 desaturase, ERG3, is present in the Chlamydomonas genome. To test whether the ERG3 ortholog of C. reinhardtii encodes a sterol C-5 desaturase, Saccharomyces cerevisiae ERG3 knockout strains were created and complemented with a plasmid expressing the Chlamydomonas ERG3. Expression of C. reinhardtii ERG3 cDNA in erg3 null yeast was able to restore ergosterol biosynthesis and reverse phenotypes associated with lack of ERG3 function.

Conclusions/Significance

Complementation of the yeast erg3 null phenotypes strongly suggests that the gene annotated as ERG3 in C. reinhardtii functions as a sterol C-5 desaturase.  相似文献   

13.
14.

Background

All modern rosids originated from a common hexapolyploid ancestor, and the genomes of some rosids have undergone one or more cycles of paleopolyploidy. After the duplication of the ancient genome, wholesale gene loss and gene subfunctionalization has occurred. Using the extensin super-gene family as an example, we tracked the differential retention and expansion of ancestral extensin genes in four modern rosids, Arabidopsis, Populus, Vitis and Carica, using several analytical methods.

Results

The majority of extensin genes in each of the modern rosids were found to originate from different ancestral genes. In Arabidopsis and Populus, almost half of the extensins were paralogous duplicates within the genome of each species. By contrast, no paralogous extensins were detected in Vitis and Carica, which have only undergone the common γ-triplication event. It was noteworthy that a group of extensins containing the IPR006706 domain had actively duplicated in Arabidopsis, giving rise to a neo-extensin around every 3 million years. However, such extensins were absent from, or rare in, the other three rosids. A detailed examination revealed that this group of extensins had proliferated significantly in the genomes of a number of species in the Brassicaceae. We propose that this group of extensins might play important roles in the biology and in the evolution of the Brassicaceae. Our analyses also revealed that nearly all of the paralogous and orthologous extensin-pairs have been under strong purifying selection, leading to the strong conservation of the function of extensins duplicated from the same ancestral gene.

Conclusions

Our analyses show that extensins originating from a common ancestor have been differentially retained and expanded among four modern rosids. Our findings suggest that, if Arabidopsis is used as the model plant, we can only learn a limited amount about the functions of a particular gene family. These results also provide an example of how it is essential to learn the origination of a gene when analyzing its function across different plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-612) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
18.

Background

Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity.

Results

To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR “gatekeeper” loci sharing syntenic orthologs across all analyzed genomes.

Conclusion

By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-966) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号