首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kink turn (K-turn) is a common motif in RNA structure, found in many RNA species important in translation, RNA modification and splicing, and the control of gene expression. In general the K-turn comprises a three nucleotide bulge followed by trans sugar-Hoogsteen G·A pairs. The RNA adopts a tightly kinked conformation, and is a common target for binding proteins, exemplified by the L7Ae family. We have measured the rates of association and dissociation for the binding of L7Ae to the Kt-7 kink turn, from which we calculate an affinity of KD = 10 pM. This high affinity is consistent with the role of this binding as the first stage in the assembly of key functional nucleoproteins such as box C/D snoRNP. Kink-turn RNA undergoes a two-state transition between the kinked conformation, and a more extended structure, and folding into the kinked form is induced by divalent metal ions, or by binding of proteins of the L7Ae class. The K-turn provides an excellent, simple model for RNA folding, which can be dissected at the atomic level. We have analyzed the contributions of the hydrogen bonds that form the G·A pairs to the ion- and protein-induced folding of the K-turn. We find that all four hydrogen bonds are important to the stability of the kinked form of the RNA, and we can now define all the important hydrogen bonding interactions that stabilize the K-turn. The high affinity of L7Ae binding is coupled to the induced folding of the K-turn, allowing some sub-optimal variants to adopt the kinked geometry. However, in all such cases the affinity is lowered, and the results underline the importance of both G·A pairs to the stability of the K-turn.  相似文献   

2.
The kink turn (K-turn) is an RNA structural motif found in many biologically significant RNAs. While most examples of the K-turn have a similar fold, the crystal structure of the Azoarcus group I intron revealed a novel RNA conformation, a reverse kink turn bent in the direction opposite that of a consensus K-turn. The reverse K-turn is bent toward the major grooves rather than the minor grooves of the flanking helices, yet the sequence differs from the K-turn consensus by only a single nucleotide. Here we demonstrate that the reverse bend direction is not solely defined by internal sequence elements, but is instead affected by structural elements external to the K-turn. It bends toward the major groove under the direction of a tetraloop–tetraloop receptor. The ability of one sequence to form two distinct structures demonstrates the inherent plasticity of the K-turn sequence. Such plasticity suggests that the K-turn is not a primary element in RNA folding, but instead is shaped by other structural elements within the RNA or ribonucleoprotein assembly.  相似文献   

3.
The kink turn is a widespread RNA motif that introduces an acute kink into the axis of duplex RNA, typically comprising a bulge followed by a G?A and A?G pairs. The kinked conformation is stabilized by metal ions, or the binding of proteins including L7Ae. We now demonstrate a third mechanism for the stabilization of k-turn structure, involving tertiary interactions within a larger RNA structure. The SAM-I riboswitch contains an essential standard k-turn sequence that kinks a helix so that its terminal loop can make?a?long-range interaction. We find that some sequence variations in the k-turn within the riboswitch do not prevent SAM binding, despite preventing the folding of the k-turn in isolation. Furthermore, two crystal structures show that the sequence-variant k-turns are conventionally folded within the riboswitch. This study shows that the folded structure of the k-turn can be stabilized by tertiary interactions within a larger RNA structure.  相似文献   

4.
The ion-induced folding transitions of the hammerhead ribozyme have been analysed by fluorescence resonance energy transfer. The hammerhead ribozyme may be regarded as a special example of a three-way RNA junction, the global structure of which has been studied by comparing the distances (as energy transfer efficiencies) between the ends of pairs of labelled arms for the three possible end-to-end vectors as a function of magnesium ion concentration. The data support two sequential ion-dependent transitions, which can be interpreted in the light of the crystal structures of the hammerhead ribozyme. The first transition corresponds to the formation of a coaxial stacking between helices II and III; the data can be fully explained by a model in which the transition is induced by a single magnesium ion which binds with an apparent association constant of 8000-10 000 M-1. The second structural transition corresponds to the formation of the catalytic domain of the ribozyme, induced by a single magnesium ion with an apparent association constant of approximately 1100 M-1. The hammerhead ribozyme provides a well-defined example of ion-dependent folding in RNA.  相似文献   

5.
The kink turn (k-turn) is a frequently occurring motif, comprising a bulge followed by G•A and A•G pairs that introduces a sharp axial bend in duplex RNA. Natural k-turn sequences exhibit significant departures from the consensus, including the A•G pairs that form critical interactions stabilizing the core of the structure. Kt-23 found in the small ribosomal subunit differs from the consensus in many organisms, particularly in the second A•G pair distal to the bulge (2b•2n). Analysis of many Kt-23 sequences shows that the frequency of occurrence at the 2n position (i.e., on the nonbulged strand, normally G in standard k-turns) is U>C>G>A. Less than 1% of sequences have A at the 2n position, but one such example occurs in Thelohania solenopsae Kt-23. This sequence folds only weakly in the presence of Mg2+ ions but is induced to fold normally by the binding of L7Ae protein. Introduction of this sequence into the SAM-I riboswitch resulted in normal binding of SAM ligand, indicating that tertiary RNA contacts have resulted in k-turn folding. X-ray crystallography shows that the T. solenopsae Kt-23 adopts a standard k-turn geometry, making the key, conserved hydrogen bonds in the core and orienting the 1n (of the bulge-proximal A•G pair) and 2b adenine nucleobases in position facing the opposing minor groove. The 2b and 2n adenine nucleobases are not directly hydrogen bonded, but each makes hydrogen bonds to their opposing strands.  相似文献   

6.
The hammerhead ribozyme undergoes an ion-dependent folding process into the active conformation. We find that the folding can be blocked at specific stages by changes of sequence or functionality within the core. In the the absence of added metal ions, the global structure of the hammerhead is extended, with a large angle subtended between stems I and II. No core sequence changes appear to alter this geometry, consistent with an unstructured core under these conditions. Upon addition of low concentrations of magnesium ions, the hammerhead folds by an association of stems II and III, to include a large angle between them. This stage is inhibited or altered by mutations within the oligopurine sequence lying between stems II and III, and folding is completely prevented by an A14G mutation. Further increase in magnesium ion concentration brings about a second stage of folding in the natural sequence hammerhead, involving a reorientation of stem I, which rotates around into the same direction of stem II. Because this transition occurs over the same range of magnesium ion concentration over which the hammerhead ribozyme becomes active, it is likely that the final conformation is most closely related to the active form of the structure. Magnesium ion-dependent folding into this conformation is prevented by changes at G5, notably removal of the 2'-hydroxyl group and replacement of the base by cytidine. The ability to dissect the folding process by means of sequence changes suggests that two separate ion-dependent stages are involved in the folding of the hammerhead ribozyme into the active conformation.  相似文献   

7.
Although truncation of the hydrophilic C-terminal tail of the lactose (lac) permease of Escherichia coli (residues 401-417) has no significant effect on membrane insertion, stability, or transport activity, sequential substitution of stop codons for amino acid codons 398-401 leads to a progressive increase in transport activity and in the lifetime of the permease in the membrane (McKenna, E., Hardy, D., Pastore, J. C., and Kaback, H. R. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2969-2973). Thus, either the last turn of putative helix XII or the region immediately distal to helix XII is important for proper folding, and hence, activity and resistance to proteolysis. In an effort to determine whether this 3-4-amino acid sequence comprises the final turn of the last transmembrane helix of the permease or the beginning of the hydrophilic C-terminal tail, we deleted residues 401-417 and replaced amino acid residues 397-400 with either 4 Leu residues ("helix making") or Gly-Pro-Gly-Pro ("helix breaking"). Permease with 4 Leu residues at positions 397-400 is fully functional with respect to transport and completely stable, as judged by [35S]methionine labeling experiments. In marked contrast, permease with Gly-Pro-Gly-Pro at the same positions exhibits minimal activity and is unstable. The results imply that the amino acid sequence ... Val397Phe398Thr399 Leu400 ... in lac permease may comprise the last turn of transmembrane helix XII, rather than the beginning of the C-terminal tail.  相似文献   

8.
A Poupon  J P Mornon 《FEBS letters》1999,452(3):283-289
Understanding the mechanism of protein folding would allow prediction of the three-dimensional structure from sequence data alone. It has been shown that small proteins fold in a small number of kinetic steps and that significantly populated intermediate states exist for some of them. Studies of these intermediates have demonstrated the existence of specific interactions established during the initial stages of folding. Comparison of the amino acids participating in these specific and essential interactions and constituting the folding nucleus with conserved hydrophobic positions of a given fold shows a striking correspondence. This finding opens the perspective of predicting the folding nucleus knowing only a set of divergent sequences of a protein family.  相似文献   

9.
We previously demonstrated that many "weak-folding" simple repeats were replaced during evolution by alternative weak-folding repeats. This suggested repeat selection at the level of higher order structure potential. Here, we demonstrate similar phenomena for "strong-folding" simple repeats in non-coding DNA. The Rabgap1 gene's 3' UTR contained the self-complementary repeat (AT)n in Homo sapiens but, in Mus musculus, this site was occupied by the complementary repeats (GT)n and (AC)n. Similarly, primate Plag1 UTRs contained various (GT)n-(AC)n palindromes but in rodents, this site was occupied by (AT)n, preserving folding potential more than primary sequence. The Znf516, Senp1, Rock2, and other UTRs exhibited similar replacements. In the Bnc2 UTR, (AT)n was replaced by sequences that evolved with approximate symmetry about a central axis, a pattern difficult to explain without invoking selection to preserve secondary structure. These observations reflect a predictable evolutionary pattern for some common non-coding genomic sequences.  相似文献   

10.
Predicting protein folding rate from amino acid sequence is an important challenge in computational and molecular biology. Over the past few years, many methods have been developed to reflect the correlation between the folding rates and protein structures and sequences. In this paper, we present an effective method, a combined neural network--genetic algorithm approach, to predict protein folding rates only from amino acid sequences, without any explicit structural information. The originality of this paper is that, for the first time, it tackles the effect of sequence order. The proposed method provides a good correlation between the predicted and experimental folding rates. The correlation coefficient is 0.80 and the standard error is 2.65 for 93 proteins, the largest such databases of proteins yet studied, when evaluated with leave-one-out jackknife test. The comparative results demonstrate that this correlation is better than most of other methods, and suggest the important contribution of sequence order information to the determination of protein folding rates.  相似文献   

11.
Vegetation shade is characterized by marked decreases in the red/far‐red ratio and photosynthetic irradiance. The activity of phytochrome in the field has typically been described by its photoequilibrium, defined by the photochemical properties of the pigment in combination with the spectral distribution of the light. This approach represents an oversimplification because phytochrome B (phyB) activity depends not only on its photochemical reactions but also on its rates of synthesis, degradation, translocation to the nucleus, and thermal reversion. To account for these complex cellular reactions, we used a model to simulate phyB activity under a range of field conditions. The model provided values of phyB activity that in turn predicted hypocotyl growth in the field with reasonable accuracy. On the basis of these observations, we define two scenarios, one is under shade, in cloudy weather, at the extremes of the photoperiod or in the presence of rapid fluctuations of the light environment caused by wind‐induced movements of the foliage, where phyB activity departs from photoequilibrium and becomes affected by irradiance and temperature in addition to the spectral distribution. The other scenario is under full sunlight, where phyB activity responds mainly to the spectral distribution of the light.  相似文献   

12.
The solution conformations of a hybrid sequence peptide related to the bee venom peptide apamin have been determined using two-dimensional 1H-nmr. Apamin is an 18 amino acid peptide containing a C-terminal helix that is stabilized by two disulfide bonds. The deletion of one residue (K4) of the N-terminal “scaffold” region of the apamin sequence results in a helical peptide, but with a change in the pairing of cysteines to form the disulfide cross links. The new disulfide arrangement is analogous to that of the vasoconstrictor peptide endothelin. Two sets of nmr resonances were observed for the apamin-deletion (AD) peptide, due to cis-trans isomerism at the A4-P5 peptide bond. The cis isomer of the AD peptide contains a tight turn in residues 3–6, which is required for formation of the α-helix in residues 7–15. Nuclear Overhauser effects observed for the trans AD peptide are not consistent with any single unique fold, indicating the presence of conformational averaging when the peptide adopts the trans form. Distance geometry calculations on the cis AD peptide reveal an α-helical structure that appears to be more like that of apamin than the crystal structure of human endothelin, despite the reversal of the disulfide pattern in the AD peptide from that of apamin to that of endothelin.© 1997 John Wiley & Sons, Inc. Biopoly 41 : 451–460, 1997  相似文献   

13.
A N Stroup  L M Gierasch 《Biochemistry》1990,29(42):9765-9771
A family of mutants of the P22 bacteriophage tailspike protein has been characterized as temperature sensitive for folding (tsf) by King and co-workers [King, J. (1986) Bio/Technology 4, 297-303]. There is substantial evidence that the tsf mutations alter the folding pathway but not the stability of the final folded protein. Several point mutations are known to cause the tsf phenotype; most of these occur in regions of the tailspike sequence likely to take up reverse turns. Hence, it has been hypothesized that the correct folding of the P22 tailspike protein requires formation of turns and that the mutations causing tsf phenotypes interfere at this critical stage. We have tested this hypothesis by study of isolated peptides corresponding to a region of the P22 tailspike harboring a tsf mutation. Comparison of the tendencies of wild-type and tsf sequences to adopt turn conformations was achieved by the synthesis of peptides with flanking cysteine residues and the use of a thiol-disulfide exchange assay. We find that the wild-type sequence, either as a decapeptide (Ac-CVKFPGIETC-CONH2) or as a dodecapeptide (Ac-CYVKFPGIETLC-CONH2), has a 3-5-fold greater tendency for its termini to approach closely enough to form the intramolecular disulfide than do the peptide sequences corresponding to the tsf mutant sequences, which have a Gly----Arg substitution (Ac-CVKFPRIETC-CONH2 or Ac-CYVKFPRIETLC-CONH2). A peptide with a D-Arg substituted for the Gly has a slightly higher turn propensity than does the wild type. Together with data from nuclear magnetic resonance analysis of the oxidized peptides, this suggests that a type II beta turn is favored by the wild-type sequence. Our results on isolated peptides from the P22 tailspike protein support the model for its folding that includes reverse turn formation as a critical step.  相似文献   

14.
A crucial event in protein folding is the formation of a folding nucleus, which is a structured part of the protein chain in the transition state. We demonstrate a correlation between locations of residues involved in the folding nuclei and locations of predicted amyloidogenic regions. The average Phi-values are significantly greater inside amyloidogenic regions than outside them. We have found that fibril formation and normal folding involve many of the same key residues, giving an opportunity to outline the folding initiation site in protein chains. The search for folding initiation sites for apomyoglobin and ribonuclease. A coincides with the predictions made by other approaches.  相似文献   

15.
The k-turn is a widespread structural motif that introduces a tight kink into the helical axis of double-stranded RNA. The adenine bases of consecutive G•A pairs are directed toward the minor groove of the opposing helix, hydrogen bonding in a typical A-minor interaction. We show here that the available structures of k-turns divide into two classes, depending on whether N3 or N1 of the adenine at the 2b position accepts a hydrogen bond from the O2′ at the −1n position. There is a coordinated structural change involving a number of hydrogen bonds between the two classes. We show here that Kt-7 can adopt either the N3 or N1 structures depending on environment. While it has the N1 structure in the ribosome, on engineering it into the SAM-I riboswitch, it changes to the N3 structure, resulting in a significant alteration in the trajectory of the helical arms.  相似文献   

16.
The folding of WW domains is rate limited by formation of a beta-hairpin comprising residues from strands 1 and 2. Residues in the turn of this hairpin have reported Phi-values for folding close to 1 and have been proposed to nucleate folding. High Phi-values do not necessarily imply that the energetics of formation are a driving force for initiating folding. We demonstrate by NMR studies and molecular dynamics simulations that the first turn of the hYAP, FBP28, and PIN1 WW domains is structurally dynamic and solvent exposed in the native and folding transition states. It is, therefore, unlikely that the formation of the beta-turn per se provides the energetic driving force for hairpin folding. It is more likely that the turn acts as an easily formed hinge that facilitates the formation of the hairpin; it is a nucleus as defined by the nucleation-condensation mechanism whereby a diffuse nucleus is stabilized by associated interactions.  相似文献   

17.
Summary The structural consequences of clamping the transepithelial potential difference across the toad's urinary bladder have been examined. Reducing the potential to zero (short-circuiting) produced no apparent changes in the morphology of any of the four cell types which comprise the epithelium. Computer assisted, morphometric analysis of quick frozen specimens revealed no measurable difference in granular cell volume between open- and short-circuited preparations. However, when the open-circuit potential was quantitatively reversed (serosa negative with respect to mucosa), some of the preparations showed a marked increase in granular cell volume. To examine this more systematically twelve preparations were voltage-clamped at 50 mV (serosa negative); eight of the twelve revealed prominent granular cell swelling relative to control, short-circuited preparations. Only in this group of eight had the external circuit current fallen substantially during the clamping interval. Mitochondria-rich cells were not affected detectably. Application of the diuretic amiloride prior to clamping at reversed potential prevented granular cell swelling in every case. Goblet cells which were often affected by the –50 mV clamp were not protected by the diuretic. Granular cell swelling thus appeared to be dependent on sodium entry at the mucosal surface. We also observed that, after voltage reversal, the apical tight junctions of the bladders were blistered as they are with hypertonic mucosal media. This blistering was associated with an increase in passive ionic permeability and was not prevented by application of amiloride. This finding is consistent with the evidence that the junction is a complex barrier with asymetric, and hence, rectifying properties for intrinsic ionic conductance as well as hydraulic permeability. These findings, together with others from the literature, lead to the conclusion that the granular cells constitute the principal, if not sole, elements for active sodium transport across toad urinary bladder and that they swell when sodium entry exceeds the transport capacity of the pump at the basal-lateral surface.  相似文献   

18.
A class of hairpin polyamides linked by 3,4-diaminobutyric acid, resulting in a β-amine residue at the turn unit, showed improved binding affinities relative to their α-amino-γ-turn analogs for particular sequences. We incorporated β-amino-γ-turns in six-ring polyamides and determined whether there are any sequence preferences under the turn unit by quantitative footprinting titrations. Although there was an energetic penalty for G·C and C·G base pairs, we found little preference for T·A over A·T at the β-amino-γ-turn position. Fluorine and hydroxyl substituted α-amino-γ-turns were synthesized for comparison. Their binding affinities and specificities in the context of six-ring polyamides demonstrated overall diminished affinity and no additional specificity at the turn position. We anticipate that this study will be a baseline for further investigation of the turn subunit as a recognition element for the DNA minor groove.  相似文献   

19.
The folding ability of a heteropolymer model for proteins subject to Monte Carlo dynamics on a simple cubic lattice is shown to be strongly correlated with the stability of the native state. We consider a number of estimates of the stability that can be determined without simulation, including the energy gap between the native state and the structurally dissimilar part of the spectrum (Z score) and, for sequences with fully compact native states, the gap in energy between the native and first excited fully compact states. These estimates are found to be more robust predictors of folding ability than a parameter sigma that requires simulation for its evaluation: sigma = 1 - Tf/Ttheta, where Tf is the temperature at which the fluctuation of an order parameter is at its maximum and Ttheta is the temperature at which the specific heat is at its maximum. We show that the interpretation of Ttheta as the collapse transition temperature is not correct in general and that the correlation between sigma and the folding ability arises from the fact that sigma is related to the energy gap (Z score).  相似文献   

20.
Homologous aquaporin water channels utilize different folding pathways to acquire their transmembrane (TM) topology in the endoplasmic reticulum (ER). AQP4 acquires each of its six TM segments via cotranslational translocation events, whereas AQP1 is initially synthesized with four TM segments and subsequently converted into a six membrane-spanning topology. To identify sequence determinants responsible for these pathways, peptide segments from AQP1 and AQP4 were systematically exchanged. Chimeric proteins were then truncated, fused to a C-terminal translocation reporter, and topology was analyzed by protease accessibility. In each chimeric context, TM1 initiated ER targeting and translocation. However, AQP4-TM2 cotranslationally terminated translocation, while AQP1-TM2 failed to terminate translocation and passed into the ER lumen. This difference in stop transfer activity was due to two residues that altered both the length and hydrophobicity of TM2 (Asn(49) and Lys(51) in AQP1 versus Met(48) and Leu(50) in AQP4). A second peptide region was identified within the TM3-4 peptide loop that enabled AQP4-TM3 but not AQP1-TM3 to reinitiate translocation and cotranslationally span the membrane. Based on these findings, it was possible to convert AQP1 into a cotranslational biogenesis mode similar to that of AQP4 by substituting just two peptide regions at the N terminus of TM2 and the C terminus of TM3. Interestingly, each of these substitutions disrupted water channel activity. These data thus establish the structural basis for different AQP folding pathways and provide evidence that variations in cotranslational folding enable polytopic proteins to acquire and/or maintain primary sequence determinants necessary for function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号