首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An increase in the dose of the Su(var)3-7 locus of Drosophila augments heterochromatin-promoted variegated silencing. The deduced protein sequence of Su(var)3-7 reveals seven widely spaced zinc fingers. We found that Su(var)3-7 has affinity for DNA in vitro and that the minimal protein sequence requirement for DNA binding is any module containing two zinc fingers and the interval between them. As Su(var)3-7 is a heterochromatin-associated protein, we tested its affinity for various satellite DNA sequences in vitro. The AATAT and 353-bp elements have the highest affinity. If affinity for satellite DNAs contributes to the presence of Su(var)3-7 in heterochromatin, a general affinity for DNA, or sequences yet to be determined, suggests a function in the genomic silencing of position-effect variegation: expansion of heterochromatin, whether continuous by spreading or discontinuous by pairing with sequence elements scattered through euchromatin, could use the affinity of Su(var)3-7 for DNA.  相似文献   

3.
Yu F  Liu X  Alsheikh M  Park S  Rodermel S 《The Plant cell》2008,20(7):1786-1804
The Arabidopsis thaliana yellow variegated2 (var2) mutant is variegated due to lack of a chloroplast FtsH-like metalloprotease (FtsH2/VAR2). We have generated suppressors of var2 variegation to gain insight into factors and pathways that interact with VAR2 during chloroplast biogenesis. Here, we describe two such suppressors. Suppression of variegation in the first line, TAG-FN, was caused by disruption of the nuclear gene (SUPPRESSOR OF VARIEGATION1 [SVR1]) for a chloroplast-localized homolog of pseudouridine (Psi) synthase, which isomerizes uridine to Psi in noncoding RNAs. svr1 single mutants were epistatic to var2, and they displayed a phenotypic syndrome that included defects in chloroplast rRNA processing, reduced chloroplast translation, reduced chloroplast protein accumulation, and elevated chloroplast mRNA levels. In the second line (TAG-IE), suppression of variegation was caused by a lesion in SVR2, the gene for the ClpR1 subunit of the chloroplast ClpP/R protease. Like svr1, svr2 was epistatic to var2, and clpR1 mutants had a phenotype that resembled svr1. We propose that an impairment of chloroplast translation in TAG-FN and TAG-IE decreased the demand for VAR2 activity during chloroplast biogenesis and that this resulted in the suppression of var2 variegation. Consistent with this hypothesis, var2 variegation was repressed by chemical inhibitors of chloroplast translation. In planta mutagenesis revealed that SVR1 not only played a role in uridine isomerization but that its physical presence was necessary for proper chloroplast rRNA processing. Our data indicate that defects in chloroplast rRNA processing are a common, but not universal, molecular phenotype associated with suppression of var2 variegation.  相似文献   

4.
Variegation mutants and mechanisms of chloroplast biogenesis   总被引:6,自引:0,他引:6  
Variegated plants typically have green‐ and white‐sectored leaves. Cells in the green sectors contain normal‐appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes. In some plants, the green and white sectors have different genotypes, but in others they have the same (mutant) genotype. One advantage of variegations is that they provide a means of studying genes for proteins that are important for chloroplast development, but for which mutant analysis is difficult, either because mutations in a gene of interest are lethal or because they do not show a readily distinguishable phenotype. This paper focuses on Arabidopsis variegations, for which the most information is available at the molecular level. Perhaps the most interesting of these are variegations caused by defective nuclear gene products in which the cells of the mutant have a uniform genotype. Two questions are of paramount interest: (1) What is the gene product and how does it function in chloroplast biogenesis? (2) What is the mechanism of variegation and why do green sectors arise in plants with a uniform (mutant) genotype? Two paradigms of variegation mechanism are described: immutans (im) and variegated2 (var2). Both mechanisms emphasize compensating activities and the notion of plastid autonomy, but redundant gene products are proposed to play a role in var2, but not in im. It is hypothesized that threshold levels of certain activities are necessary for normal chloroplast development.  相似文献   

5.
The immutans (im) variegation mutant of Arabidopsis thaliana contains green- and white-sectored leaves due to the action of a nuclear recessive gene. The mutation is somatically unstable, and the degree of sectoring is influenced by light and temperature. Whereas the cells in the green sectors contain normal chloroplasts, the cells in the white sectors are heteroplastidic and contain non-pigmented plastids that lack organized lamellar structures, as well as small pigmented plastids and/or rare normal chloroplasts. This indicates that the plastids in im white cells are not affected equally by the nuclear mutation and that the expression of immutans is ‘plastid autonomous’. In contrast to other variegation mutants with heteroplastidic cells, the defect in im is not maternally inherited. immutans thus represents a novel type of nuclear gene-induced variegation mutant. It has also been found that the white tissues of immutans accumulate phytoene, a non-colored C40 carotenoid intermediate. This suggests that immutans controls, either directly or indirectly, the activity of phytoene desaturase (PDS), the enzyme that converts phytoene to zeta-carotene in higher plants. However, im is not the structural gene for PDS. A secondary effect of carotenoid deficiency, both in immutans and in wild-type plants treated with a herbicide that blocks carotenoid synthesis, is an increase in acid ribonuclease activity in white tissue. It is concluded that the novel variegation generated by the immutans mutation should offer great insight into the complex circuitry that regulates nuclear—organelle interactions.  相似文献   

6.
Variegation mutants are ideal model systems to study chloroplast biogenesis. We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes. In this review, we focus on the Arabidopsis var2 variegation mutant, and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation. VAR2 is a subunit of the chloroplast FtsH complex, which is involved in turnover of the Photosystem II reaction center D1 protein, as well as in other processes required for the development and maintenance of the photosynthetic apparatus. The cells in green sectors of var2 have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lamellae. To explain the mechanism of var2 variegation, we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2. To gain insight into these activities, second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes. Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression, including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

7.
Shoots of anaerobically germinated Echinochloa crus-galli var oryzicola are nonpigmented whether germinated in light or dark, and chlorophyll synthesis is minimal for the first 12 to 18 hours of greening after exposure to ambient conditions. When chlorophyll development is compared between greening anoxic and etiolated shoots, there is a 100-fold difference in chlorophyll levels at 8 hours, an 8-fold difference at 24 hours, but roughly equal amounts at 60 hours. The chlorophyll a/b ratio approaches 3 earlier in greening anoxic shoots than in greening etiolated shoots, relative to total chlorophyll. The long lag in chlorophyll synthesis can be shortened by giving dark-grown anoxic shoots a 24-hour midtreatment of air before light.

Development of photosynthetic activity in etiolated shoots, determined by CO2 gas exchange, 14CO2 uptake, and activity of carboxylating enzymes closely parallels development of chlorophylls. However, development of photosynthetic capability in greening anoxic shoots does not parallel chlorophyll development; ability to fix carbon lags behind chlorophyll synthesis. A reason for this lag is the very low activity of RuBP carboxylase during the first 36 hours of greening in anoxic shoots. The activity of phosphoenolpyruvate carboxylase is also delayed, but its kinetics more closely match those of chlorophyll development.

  相似文献   

8.
In addition to linear electron transport from water to NADP+, alternative electron transport pathways are believed to regulate photosynthesis. In the two routes of photosystem I (PSI) cyclic electron transport, electrons are recycled from the stromal reducing pool to plastoquinone (PQ), generating additional ΔpH (proton gradient across thylakoid membranes). Plastid terminal oxidase (PTOX) accepts electrons from PQ and transfers them to oxygen to produce water. Although both electron transport pathways share the PQ pool, it is unclear whether they interact in vivo. To investigate the physiological link between PSI cyclic electron transport‐dependent PQ reduction and PTOX‐dependent PQ oxidation, we characterized mutants defective in both functions. Impairment of PSI cyclic electron transport suppressed leaf variegation in the Arabidopsis immutans (im) mutant, which is defective in PTOX. The im variegation was more effectively suppressed in the pgr5 mutant, which is defective in the main pathway of PSI cyclic electron transport, than in the crr2‐2 mutant, which is defective in the minor pathway. In contrast to this chloroplast development phenotype, the im defect alleviated the growth phenotype of the crr2‐2 pgr5 double mutant. This was accompanied by partial suppression of stromal over‐reduction and restricted linear electron transport. We discuss the function of the alternative electron transport pathways in both chloroplast development and photosynthesis in mature leaves.  相似文献   

9.
Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique...  相似文献   

10.
The response of photosynthetic electron transport and light-harvesting efficiency to high temperatures was studied in the desert shrub Larrea divaricata Cav. Plants were grown at day/night temperatures of 20/15, 32/25, or 45/33 C in rough approximation of natural seasonal temperature variations. The process of acclimation to high temperatures involves an enhancement of the stability of the interactions between the light-harvesting pigments and the photosystem reaction centers. As temperature is increased, the heat-induced dissociation of these complexes results in a decrease in the quantum yield of electron transport at limiting light intensity, followed by a loss of electron transport activity at rate-saturating light intensity. The decreased quantum yield can be attributed to a block of excitation energy transfer from chlorophyll b to chlorophyll a, and changes in the distribution of the excitation energy between photosystems II and I. The block of excitation energy transfer is characterized by a loss of the effectiveness of 480 nm light (absorbed primarily by chlorophyll b) to drive protochemical processes, as well as fluorescence emission by chlorophyll b.  相似文献   

11.
Arabidopsis var1 and var2 mutants exhibit leaf variegation. VAR1 and VAR2 encode similar FtsH metalloproteases (FtsH5 and FtsH2, respectively). We have previously found many variegated mutants to be allelic to var2. Each mutant was shown to express a different degree of variegation, and the formation of white sectors was enhanced in severely variegated alleles when these alleles were grown at low temperature. VAR1/FtsH5 and VAR2/FtsH2 levels were mutually affected even in the weak alleles, confirming our previous observation that the two proteins form a hetero complex. In this study, the sites of the mutations in these var2 alleles were determined. We isolated eight point mutations. Five alleles resulted in an amino acid substitution. Three of the five amino acid substitutions occurred in Walker A and B motifs of the ATP-binding site, and one occurred in the central pore motif. These mutations were considered to profoundly suppress the ATPase and protease activities. In contrast, one mutation was found in a region that contained no obvious signature motifs, but a neighboring sequence, Gly–Ala–Asp, was highly conserved among the members of the AAA protein family. Site-directed mutagenesis of the corresponding residue in E. coli FtsH indeed showed that this residue is necessary for proper ATP hydrolysis and proteolysis. Based on these results, we propose that the conserved Gly–Ala–Asp motif plays an important role in FtsH activity. Thus, characterization of the var2 alleles could help to identify the physiologically important domain of FtsH.  相似文献   

12.
Variegation mutants are ideal model systems to study chloroplast biogenesis.We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes.In this review,we focus on the Arabidopsis var2 variegation mutant,and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation.VAR2 is a subunit of the chloroplast FtsH complex,which is involved in turnover of the Photosystem Ⅱ reaction center D1 protein,as well as in other processes required for the development and maintenance of the photosynthetic apparatus.The cells in green sectors of var2have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lameliae.To explain the mechanism of var2 variegation,we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2.To gain insight into these activities,second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes.Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression,including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

13.
CO2 gas exchange, ribulose-1,5-bisphosphate, and electron transport have been measured in leaves of a yellow-green mutant of wheat (Triticum durum var Cappelli) and its wild type strain grown in the field. All these parameters, expressed on leaf area basis, were similar in both genotypes except electron transport which was more than double in the wild type. These results, treated according to a recent photosynthesis model for C3 plants, seem to indicate that the electron transport rate of mutant leaves is not sufficient to support the carboxylation derived through both the assimilation rate and the in vitro ribulose-1,5-bisphosphate carboxylase activity. It is suggested that under our experimental conditions photosynthetic electron transport is not the sole energy-dependent determinant of ribulose-1,5-bisphosphate regeneration in the mutant.  相似文献   

14.
Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.  相似文献   

15.
Summary Dominant suppressor mutations for position-effect variegation have been isolated by using a strongly variegated line carrying the w m4 chromosome (w m4h) and the dominant enhancer mutant En(var)c 101. The use of an effective genetic test system made it possible to isolate more than 100 strongly dominant suppressor mutations for position-effect variegation. This suggests that the phenomenon of position-effect variegation is characterised by a complex genetic basis. The significance of the isolated mutants to genetic dissection of structural and regulatory functions of the eukaryotic chromosome is discussed.  相似文献   

16.
An Arabidopsis thaliana leaf-variegated mutant yellow variegated2 (var2) results from loss of FtsH2, a major component of the chloroplast FtsH complex. FtsH is an ATP-dependent metalloprotease in thylakoid membranes and degrades several chloroplastic proteins. To understand the role of proteolysis by FtsH and mechanisms leading to leaf variegation, we characterized the second-site recessive mutation fu-gaeri1 (fug1) that suppressed leaf variegation of var2. Map-based cloning and subsequent characterization of the FUG1 locus demonstrated that it encodes a protein homologous to prokaryotic translation initiation factor 2 (cpIF2) located in chloroplasts. We show evidence that cpIF2 indeed functions in chloroplast protein synthesis in vivo. Suppression of leaf variegation by fug1 is observed not only in var2 but also in var1 (lacking FtsH5) and var1 var2. Thus, suppression of leaf variegation caused by loss of FtsHs is most likely attributed to reduced protein synthesis in chloroplasts. This hypothesis was further supported by the observation that another viable mutation in chloroplast translation elongation factor G also suppresses leaf variegation in var2. We propose that the balance between protein synthesis and degradation is one of the determining factors leading to the variegated phenotype in Arabidopsis leaves.  相似文献   

17.
Latzko E  Gibbs M 《Plant physiology》1969,44(2):295-300
Profile analyses of the enzymes comprising the photosynthetic carbon reduction cycle have been performed in extracts of dark grown and greening Euglena gracilis var. bacillaris. Chlorella pyrenoidosa grown photoautotrophically, in the light with glucose or in the dark with glucose, Tolypothrix tenuis, Chromatium and leaves of spinach. Amounts of activity are compared with the level of photosynthetic CO2 fixation. Only in Chromatium were all enzyme activities sufficient to support the in vivo rate of CO2 fixation. In organisms other than Chromatium, some enzymes and particularly fructose 1,6-phosphatase and ribulose 1.5-diphosphate carboxylase appeared to be present in insufficient amounts to support the photosynthetic rate of the intact cell. Developmental studies with Euglena and growth studies with Chlorella led to the conclusion that these enzymes were associated with the cycle. Suppression of CO2 fixation in heterotrophically grown Chlorella was accompanied by a striking decrease in the same enzymes whose activities increased in greening Euglena.  相似文献   

18.
Transformation of protochlorophyllide forms in etiolated barley seedlings and biogenesis of photosynthetic apparatus in greening leaves of 7-day-old etiolated barley seedlings (Hordeum vulgare L.) were studied under the inhibition of energy processes during illumination. Repression of electron transport between photosystem 2 and 1 (PS2 and PS1, respectively) with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) inhibited the photochemical activity of PS2 but did not affect chlorophyll biosynthesis and ATP content in leaves compared to the control. Inhibition of mitochondrial electron transport with sodium azide increased relative content of nonphotoactive protochlorophyllide in etiolated leaves, decreased the content of ATP, chlorophylls, and carotenoids and completely suppressed the functional activity of PS 2. The inhibitor of glycolysis sodium fluoride affected all the parameters even more strongly. We observed synchronism in the accumulation of chlorophylls and carotenoids during greening for all inhibitor variants other than fluoride (correlation coefficient, r, equal to 0.98, 0.97, 0.97, and 0.47 with the significance level of 0.01; 0.015; 0.015, and 0.27 for control, diuron, azide, and sodium fluoride, respectively). The change in chlorophyll content under the influence of inhibitors positively correlated with the amount of ATP in the leaf tissue (for 24 h greening, r = 0.97 with significance level of 0.015). We suggest that sources of ATP involved in the synthesis of chlorophyll during greening of etiolated barley seedlings are mostly of non-plastid origin.  相似文献   

19.
Five-year-old trees of deciduous Quercus robur L., evergreen Q. ilex L., and their semideciduous hybrid, Q. × turneri Willd. (var. pseudoturneri), growing in pots, were subjected to drought stress by withholding water for 18–22 days, until leaf water potentials decreased below ?2 MPa. Gas-exchange rates, oxygen evolution, and modulated chlorophyll (Chl) fluorescence measurements revealed that by strong stomata closure and declining photosynthetic capacity down to approximately 50%, all three taxa responded with strongly reduced photosynthesis rates. In Q. robur, photochemical quenching of the drought-stressed plants was much lower than in nonstressed controls. Dissection of the occurring events in the photosynthetic electron transport chain by fast Chl fluorescence induction analysis with the JIP-test were discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号