共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cloning of Rhizobium leguminosarum genes for competitive nodulation blocking on peas. 总被引:3,自引:0,他引:3 下载免费PDF全文
One type of competitive interaction among rhizobia is that between nonnodulating and nodulating strains of Rhizobium leguminosarum on primitive pea genotypes. Pisum sativum cv. Afghanistan nodulates effectively with R. leguminosarum TOM, and this can be blocked in mixed inoculations by R. leguminosarum PF2, which does not nodulate this cultivar. We termed this PF2 phenotype Cnb+, for competitive nodulation blocking. Strain PF2 contains three large plasmids including a 250-kilobase-pair symbiotic (Sym) plasmid. Transfer of this plasmid, pSymPF2, to nonblocking rhizobia conferred the Cnb+ phenotype on recipients in mixed inoculations on cultivar Afghanistan with TOM. A library of the PF2 genome constructed in the vector pMMB33 was used to isolate two cosmid clones which hybridize to pSymPF2. These cosmids, pDD50 and pDD58, overlapped to the extent of 23 kilobase pairs and conferred a Cnb+ phenotype on recipient Cnb- rhizobia, as did pSD1, a subclone from the common region. 相似文献
4.
Six effective Rhizobium leguminosarum bv. phaseoli strains were examined for nodulation competitiveness on common bean (Phaseolus vulgaris L.), using all possible two-strain combinations of inoculum. Nodule occupancy was determined with strain-specific fluorescent antibodies. The strains were divided into three groups according to their overall competitive abilities on pole bean cv. Kentucky Wonder and bush bean cv. Bountiful. Strains TAL 182 and TAL 1472 were highly competitive (greater than 70% nodule occupancy); strains KIM-5, Viking 1, and CIAT 899 were moderately competitive (approximately 50% nodule occupancy); and strain CIAT 632 was poorly competitive (less than 5% nodule occupancy). The competitiveness of the six strains was similar on the two host cultivars. The proportion of competing strains in the inoculum influenced the nodule occupancy of the highly competitive and moderately competitive strains, but not that of the poorly competitive strain. Two outstanding strains (TAL 182 and TAL 1472) were identified as ideal model strains for molecular and genetic studies on nodulation competitiveness. 相似文献
5.
This study examines the speed of nodulation of 20 strains of Rhizobium leguminosarum bv phaseoli, and relates this trait to the competitive performance of these strains with Phaseolus vulgaris L. At 25/20°C day/night temperature, and with 107 cells applied per growth pouch, there was a strong positive correlation between the speed of nodulation and the competitiveness of strains with the nod
+ fix– reference strain UMR 1116. Strains UMR 1084, 1125, 1165, 1173 and 1384 combined good competitive performance with extensive nodulation in the uppermost root regions. When inoculant levels in the RTM studies were reduced to 103 cells per pouch no correlation between the apparent competitiveness of strains and their speed in nodulation was evident, presumably because cells had to undergo multiplication before infection. Nodulation was also delayed when growth temperatures were raised to 31/26°C, but a correlation was still evident between competitive performance and nodulation in the region 0.1 to 5.0 mm below the RTM at the time of inoculation. From these results speed of nodulation can be used to estimate the competitive potential of Rhizobium strains, but only under carefully regulated conditions. The effects of inoculation level and temperature on the relationship between speed of nodulation and strain competitiveness could explain the inconsistent results obtained in earlier studies on this topic.Journal paper No. 16962, Agricultural Experiment Station, University of Minnesota, St. Paul, MN 55108, USA 相似文献
6.
7.
8.
9.
Soil acidity constraints grain legume production in tropical soils, both limiting Rhizobium survival and reducing nodulation.
Strains of rhizobia with greater tolerance to hydrogen-ion concentration have been identified, but the basis for strain differences
in pH tolerance has yet to be determined. In this study, strains of Rhizobium leguminosarum by phaseoli which differed in their tolerance to acidity were exposed to acid pH, then cell levels of potassium and calcium determined,
and specific ‘acid-shock’ proteins identified. Lowering the external pH to 4.6–4.7 resulted in an immediate efflux of calcium
from the cell of both acid tolerant and sensitive bean strains. Change in cell potassium levels on exposure to acidity varied
with the strain. Strain UMR 1899 and an acid-sensitive mutant derived from it maintained high cytoplasmic potassium at acid
pH, whereas an acid-sensitive strain UMR 1632 underwent a marked decline in cell potassium at pH 4.6. Exposure of these strains
to pH 4.5 in the presence of [35S]-labeled methionine enhanced production of a number of proteins, while synthesis of other proteins at this pH was significantly
reduced. Differences in banding pattern were also evident between UMR1899 and the Tn5-induced pH-sensitive mutant UMR5005 derived from it, and between cells grown in the presence and absence of calcium and phosphorus. 相似文献
10.
11.
Rhizobium Ieguminosarum biovar phaseoli type II strain CIAT899 nodulates a wide range of hosts: Phaseolus vulgaris (beans), Leucaena esculenta (leucaena) and Macroptilium atropurpureum (siratro). A nodulation region from the symbiotic plasmid has been isolated and characterized. This region, which is contained in the overlapping cosmid clones pCV38 and pCV117, is able to induce nodutes in beans, leucaena and siratro roots when introduced in strains cured for the symbiotic plasmid, pSym. In addition, this cloned region extends the host range of Rhizobium meliloti and R. leguminosarum biovar (bv.) trifolii wild-type strains to nodulate beans. Analysis of constructed subclones indicates that a 6.4 kb Hin dlll fragment contains the essential genes required for nodule induction on all three hosts. Rhizobium leguminosarum bv. phaseoli type I strain CE3 nodulates only beans. However, CE3 transconjugants harbouring plasmid pCV3802 (which hybridized to a nodD heterologous probe), were capable of eliciting nodules on leucaena and siratro roots. Our results suggest that the CIAT899 DNA region hybridizing with the R. meliloti nodD detector is involved in the extension of host specificity to promote nodule formation in P. vulgaris, L. esculenta and M. atropurpureum. 相似文献
12.
DNA sequence of the Rhizobium leguminosarum nodulation genes nodAB and C required for root hair curling 总被引:29,自引:5,他引:29 下载免费PDF全文
A 3.2kb fragment of DNA cloned from Rhizobium leguminosarum has been shown to contain the genes necessary for the induction of root hair curling, the first observed step in the infection of leguminous plants by R. leguminosarum. The DNA sequence of this region has been determined and three open reading frames were identified: genes corresponding to these open reading frames have been called nodA, nodB and nodC and are transcribed in that order. Mutations within the nodC gene completely blocked root hair curling. However, a subcloned fragment containing only the nodC gene did not induce normal root hair curling (although some branching was observed), indicating that the nodA and B genes may also be required for normal root hair curling. From an analysis of the predicted amino acid sequences of the nodAB and C genes it appeared unlikely that their products are secreted; therefore it is concluded that the induction of root hair curling could be due to a secreted metabolite. 相似文献
13.
14.
15.
Cloning of the symbiotic region of Rhizobium leguminosarum: the nodulation genes are between the nitrogenase genes and a nifA-like gene 总被引:33,自引:3,他引:33 下载免费PDF全文
The region of the Rhizobium leguminosarum plasmid pRL1JI involved in nodulation and nitrogen fixation has been cloned on a series of four overlapping cosmid clones. These clones represent ˜60 kb of pRL1JI DNA on which a series of Tn5-induced fix and nod alleles have been identified, with the two most distant alleles being separated by ˜45 kb of DNA. The mutant alleles fell into three groups, two clusters of fix alleles separated by one cluster of nod alleles. Within one group of fix alleles, DNA homologous to the nifA gene of Klebsiella pneumoniae has been identified, whereas the pRL1JI DNA homologous to the K. pneumoniae nitrogenase genes is present within the other group of fix alleles. 相似文献
16.
17.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes. 相似文献
18.
19.
20.
Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host-specific nodulation 总被引:19,自引:1,他引:18
Three nodulation genes, nodL, nodM and nodN, were isolated from Rhizobium leguminosarum and their DNA sequences were determined. The three genes are in the same orientation as the previously described nodFE genes and the predicted molecular weights of their products are 20,105 (nodL), 65,795 (nodM) and 18,031 (nodN). Analysis of gene regulation using operon fusions showed that nodL, nodM and nodN are induced in response to flavanone molecules and that this induction is nodD-dependent. In addition, it was shown that the nodM and nodN genes are in one operon which is preceded by a conserved 'nod-box' sequence, whereas the nodL gene is in the same operon as the nodFE genes. DNA hybridizations using specific gene probes showed that strongly homologous genes are present in Rhizobium trifolii but not Rhizobium meliloti or Bradyrhizobium japonicum. A mutation within nodL strongly reduced nodulation of peas, Lens and Lathyrus but had little effect on nodulation of Vicia species. A slight reduction in nodulation of Vicia hirsuta was observed with strains carrying mutations in nodM or nodN. 相似文献