首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potassium and norepinephrine stimulate the accumulation of cyclic AMP and cyclic GMP in rat pineal glands and their efflux into the medium. The efflux of both cyclic nucleotides was blocked by probenecid. The accumulation and efflux of cyclic GMP, but not of cyclic AMP, depends upon the presence of intact nerve endings and extracellular calcium. The calcium-dependent release of norepinephrine caused by veratridine was accompanied by the efflux of both cyclic AMP and cyclic GMP. In contrast, the calcium-independent release of norepinephrine caused by tyramine was accompanied by the efflux of cyclic AMP but not cyclic GMP. Changes in cyclic GMP therefore, may be related to exocytosis from the sympathetic nerve endings in the gland. High concentrations of potassium also increased tissue levels of cyclic GMP in the posterior pituitary gland. Veratridine and potassium, but not norepinephrine, stimulated the efflux of cyclic GMP from this neurosecretory gland. Thus, the relationship between cyclic GMP and exocytosis may extend beyond sympathetic nerve endings. The enhanced accumulation of cyclic GMP in the pineal gland after potassium does not appear to be mediated by extracellular (released) norepinephrine. Desmethylimipramine blocked the norepinephrine-stimulated changes in cyclic GMP, but not those caused by potassium. Investigation of the possible relationship between cyclic GMP and release of neurotransmitters is complicated by the apparent seasonal variation in the response of pineal cyclic GMP to potassium or norepinephrine.  相似文献   

2.
In C6 cells norepinephrine and dopamine caused transient increases in cyclic GMP and cyclic AMP, as well as an induction of lactate dehydrogenase. All of these responses were blocked by l-propranolol, suggesting mediation by a β-receptor. Phentolamine potentiated the NE-increased cAMP levels by 5-fold when NE was used at suboptimal doses, suggesting the presence of α-adrenergic receptors in C6 cells. Carbamylcholine decreased the levels of both cyclic nucleotides, with hexamethonium partially reversing the effect on cyclic GMP. Dibutyryl-cyclic GMP or carbamylcholine reduced catecholamine-induced cyclic AMP levels. Serotonin increased cyclic GMP levels 60% and decreased cyclic AMP levels 36%. Calcium- and magnesium-free media inhibited the norepinephrine-induced levels of cyclic GMP and cyclic AMP respectively.  相似文献   

3.
Myosin light chain phosphorylation in intact rat thoracic aorta was elevated during contraction induced by 0.3 microM norepinephrine, but was not maintained. Addition of 0.5 microM sodium nitroprusside to norepinephrine treated rat aorta strips led to elevation of cyclic GMP levels, relaxation of tension, and dephosphorylation of myosin light chain. Depletion of extracellular calcium or addition of calmodulin antagonists trifluoperazine and W7 diminished the contraction and phosphorylation of myosin light chain by norepinephrine, but did not prevent dephosphorylation by sodium nitroprusside or the elevated levels of cyclic GMP. Isoproterenol, 8-bromo cyclic GMP, and dibutyryl cyclic AMP all caused dephosphorylation of myosin light chain and induced relaxation during the period of development of tone. Eight other proteins had increased phosphorylation following norepinephrine treatment and one protein had less phosphorylation. The different proteins phosphorylated by norepinephrine showed varying degrees of sensitivity to Ca2+-free solution and to the calmodulin antagonists. The pattern of protein phosphorylation caused by sodium nitroprusside was best mimicked by 8-bromo cyclic GMP, rather than isoproterenol and dibutyryl cyclic AMP. These proteins were, generally, unaffected by Ca2+-free solution and the calmodulin antagonists. The present observations support the hypothesis that vasodilators inhibit tone development through myosin light chain dephosphorylation. Furthermore, the nitrovasodilators act through elevation of cyclic GMP and phosphorylation of proteins by cyclic GMP-dependent protein kinase.  相似文献   

4.
P K Sinha  K N Prasad 《In vitro》1977,13(8):497-501
Adenosine 3',5'-cyclic monophosphate (cyclic AMP) phsophodiesterase activity in mouse neuroblastoma cells in culture markedly increased during exponential growth and reached a maximal level at confluency; whereas guanosine 3'5'-cyclic monophosphate (cyclic GMP) phosphodiesterase activity only slightly but significantly increased under a similar experimental condition. The increase in cyclic AMP phosphodiesterase activity was blocked by both cycloheximide and dactinomycin, whereas the increase in cyclic GMP phosphodiesterase was blocked by only cycloheximide. When the confluent cells were replated at low density, the cyclic nucleotide phosphodiesterase activity decreased; however, when they were plated at high cell density which equaled confluency, the enzyme activity did not decrease. Unlike cyclic AMP phosphodiesterase activity, cyclic GMP phosphodiesterase activity did not change significantly in prostaglandin E1-treated cells, but decreased in cells treated with the inhibitor of phosphodiesterase. Like cyclic AMP phosphodiesterase activity, cyclic GMP phosphodiesterase activity also did not change in cells treated with serum-free medium, X-irradiation, sodium butyrate and 6-thioguanine.  相似文献   

5.
Summary Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) phosphodiesterase activity in mouse neuroblastoma cells in culture markedly increased during exponential growth and reached a maximal level at confluency; whereas guanosine 3′, 5′-cyclic monophosphate (cyclic GMP) phosphodiesterase activity only slightly but significantly increased under a similar experimental condition. The increase in cyclic AMP phosphodiesterase activity was blocked by both cycloheximide and dactinomycin, whereas the increase in cyclic GMP phosphodiesterase was blocked by only cycloheximide. When the confluent cells were replated at low density, the cyclic nucleotide phosphodiesterase activity decreased; however, when they were plated at high cell density which equaled confluency, the enzyme activity did not decrease. Unlike cyclic AMP phosphodiesterase activity, cyclic GMP phosphodiesterase activity did not change significantly in prostaglandin E1-treated cells, but decreased in cells treated with the inhibitor of phosphodiesterase. Like cyclic AMP phosphodiesterase activity, cyclic GMP phosphodiesterase activity also did not change in cells treated with serum-free medium, X-irradiation, sodium butyrate and 6-thioguanine. This work was supported by USPHS NS-09230, and DRG-1273 from Damon Runyon-Walter Winchell Cancer Fund.  相似文献   

6.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

7.
Elevation of cyclic GMP by muscarinic agonists has been suggested to be responsible for the negative inotropic effects of these agents in cardiac muscle, and for the endothelium-dependent relaxation caused by these agents in vascular smooth muscle. These relationships were studied by monitoring the effects of muscarinic agonists on tension and cyclic GMP levels in rabbit left atrial strips and aortic rings, in the presence and absence of the cyclic GMP lowering agent, LY83583. LY83583 completely blocked both the cyclic GMP increase and the relaxation caused by acetylcholine in rabbit aortic rings with intact endothelial cells. Acetylcholine-induced cyclic GMP elevation and relaxation in these preparations were also blocked by quinacrine and nordihydroguaiaretic acid (NDGA), but neither response was blocked by the 5-lipoxygenase inhibitor U-60257. In the experiments with rabbit left atrium, LY83583 blocked the acetylcholine-induced cyclic GMP elevation but did not block the negative inotropic effects of the drug. Quinacrine, NDGA, and a guanylate cyclase inhibitor, methylene blue, failed to block either the cyclic GMP increase or the decrease in contractile force caused by carbachol in atrial strips. These results support the suggestion that an increase in cyclic GMP may be responsible for the endothelium-dependent relaxation of rabbit aorta by muscarinic agonists, but not for the direct negative inotropic effects of these drugs in rabbit atrium. Muscarinic agents appear to increase cyclic GMP levels in rabbit atrium and aorta by different mechanisms. Although both are blocked by LY83583, they differ not only in their requirements for endothelial cells, but also in their susceptibility to other blocking agents.  相似文献   

8.
In order to ascertain the possible involvement of cyclic GMP in the physiological regulation of the function and development of brown fat of the rat, we have determined its tissue concentration in vivo under a variety of conditions. The steady-state concentration of cyclic GMP in interscapular brown adipose tissue of late foetus was about 80 pmol per g fresh weight. The concentration gradually declined during the first 2 weeks after birth to reach 40 pmol/g fresh weight and then remained constant into adulthood. The cyclic GMP content of brown fat was decreased by chemical sympathectomy and was increased after complete acclimatization of the animals to the cold. The activity of cyclic GMP-dependent protein kinase was also highest in tissue from newborn and cold-acclimatized rats.Both acute cold stress and injection of norepinephrine resulted in a significant but temporary increase in the concentration of cyclic GMP in brown fat, which was followed by a depression of the concentration below values in untreated animals. The concentration of cyclic AMP showed similar pattern of changes. Injection of phenylephrine was followed by a pronounced increase in the cyclic GMP content of brown fat, with little effect upon cyclic AMP. Injection of isoproterenol raised the content of cyclic AMP but not that of cyclic GMP. The ability of norepinephrine and phenylephrine to increase the concentration of cyclic GMP was abolished by pre-treatment of the animals with phenoxybenzamine, but not by pre-treatment with propranolol. Conversely, propranolol but not phenoxybenzamine abolished the effects of norepinephrine on the cyclic AMP content of the tissue.Thus we have established the responsiveness of the cyclic GMP content of brown fat to physiological and pharmacological stimuli and have evidence of the possible participation by cyclic GMP in the α-adrenergic stimulation and in the regulation of proliferative processes in the tissue.  相似文献   

9.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

10.
The effect of 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), a neuroprotective compound, on Ca2+ channels involving the activation of nitric oxide synthase (NOS) was investigated in primary neuronal culture. The NOS activity was estimated from the cyclic GMP formation. The KCl (25 mM)-stimulated cyclic GMP formation was totally abolished by a combined treatment with nifedipine and omega-agatoxin IVA (omega-Aga), whereas spontaneous cyclic GMP formation was partially but significantly reduced by nifedipine. In contrast to nifedipine, NS-7 blocked KCl-stimulated cyclic GMP formation without affecting spontaneous cyclic GMP formation. Subsequently, the effects of nifedipine and NS-7 on L-type Ca2+ channels were compared. Nifedipine blocked equally the cyclic GMP formation stimulated by various concentrations of (+/-)-Bay K 8644, whereas NS-7 inhibited the maximal response without affecting the responses induced by low concentrations of (+/-)-Bay K 8644. The effects of NS-7 on L-type and P/Q-type Ca2+ channels involving KCl-stimulated cyclic GMP formation were subsequently examined. NS-7 suppressed the KCl-stimulated cyclic GMP formation measured in the presence of omega-Aga to almost the same extent as that determined in the presence of nifedipine. In contrast, NS-7 had no influence on ionomycin-induced enhancement of cyclic GMP formation. Finally, NS-7 reversed KCl-induced elevation of the intracellular free Ca2+ concentration. These findings suggest that NS-7 inhibits NOS activation in primary neuronal culture by reducing Ca2+ entry through L-type and P/Q-type Ca2+ channels, in which the inhibition is largely dependent on Ca2+ channel activity.  相似文献   

11.
1. The effects of purines on denervated melanophores of the medaka were studied under experimental conditions in which melanosomes were aggregated by norepinephrine or lithium ion beforehand.2. Adenosine and its derivatives caused melanosome dispersion; the order of potency for the series was; NECA > adenosine > ATP > 2-chloroadenosine > PIA > CHA > cyclic AMP.3. 8-Phenyltheophylline, a potent purinoceptor antagonist, blocked the effect of purines and caused a rightward shift of the adenosine and analog concentration-response curves.4. 8-Br cyclic AMP also caused melanosome dispersion but its action was not blocked by 8-phenyladenosine. Dibutyryl cyclic AMP, cyclic GMP, dibutyryl cyclic GMP, and 8-br cyclic GMP were all ineffective.5. The effect of adenosine was immediately eliminated by adenosine deaminase but, actions of NECA, AMP, ADP, ATP, and cyclic AMP were not.6. Forskolin, a potent activator of adenylate cyclase, mimicked the action of adenosine.7. It is concluded that adenosine and its derivatives mediate their melanosome-dispersing effect via a P1-purinoceptor that displays characteristics of the A2-subtype and that adenine nucleotides directly activate the A2-receptor without conversion to adenosine.  相似文献   

12.
In order to clarify the mechanism(s) by which cyclic GMP inhibits the generation of inositol phosphates in rat aorta segments and cultured bovine aortic smooth muscle cells, we studied phosphoinositide hydrolysis and GTPase activity in homogenates and membrane preparations of cultured bovine aortic smooth muscle cells. Pretreatment of homogenate preparations with cyclic GMP plus ATP did not inhibit [8-arginine, 3H] vasopressin (AVP) binding, but resulted in a total suppression of the AVP-induced GTPase activation. The pretreatment with cyclic GMP and ATP also inhibited the formation of inositol phosphates induced by AVP in the presence of low concentrations of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S), or by high concentrations of GTP gamma S alone. However, the formation of inositol phosphates by high concentrations of Ca2+ alone was not blocked. These results suggest that the ability of cyclic GMP to inhibit phosphoinositide hydrolysis results from an inhibition of a guanine nucleotide regulatory protein activation, and the interaction between guanine nucleotide regulatory protein and phospholipase C. While the precise site of this inhibition is not presently known, the inhibition by cyclic GMP is dependent upon the addition of ATP and probably entails a phosphorylation event since adenylylimidodiphosphate can not substitute for the ATP requirement.  相似文献   

13.
Cyclic GMP and activators (acetylcholine, E. coli heat-stable toxin) of guanylate cyclase were capable of completely replacing the helper cell or interleukin 2 requirement for gamma-interferon (IFN gamma) production by Lyt-1-,2+ cells from C57BL/6 mouse spleen cells. The cyclic GMP help was independent of DNA synthesis or proliferation in the IFN gamma-producing cells, because cyclic GMP reversed mitomycin C blockage of IFN gamma production but did not reverse the inhibition of DNA synthesis. Thus, the findings presented here are unrelated to the question of the second messenger role of cyclic GMP in the activation of lymphocytes for DNA synthesis and cellular proliferation. The cyclic GMP help for IFN gamma production was antagonized by cyclic AMP and inducers (isoproterenol) of adenylate cyclase.  相似文献   

14.
Abstract— Incubation of guinea-pig superior cervical ganglia in 500μ4mUm -carbachol for 2min increased cyclic GMP levels 530% over control values. The increase was blocked by prior incubation in 300μm atropine. No increase in cyclic GMP levels after incubation in 100 μm -l -norepinephrine was observed. Preganglionic physiological stimulation for 8 min at 10 Hz increased cyclic GMP levels 180% over control values. We conclude that both muscarinic cholinergic and preganglionic physiological stimulation increase cyclic GMP levels in guinea pig superior cervical ganglia, while norepinephrine has no effect.  相似文献   

15.
A novel cyclic GMP-lowering agent, LY83583(6-anilino-5,8-quinolinedione), was used to investigate the possibility that increases in myocardial cyclic GMP levels are responsible for the negative inotropic effects of cholinergic agonists. Concentrations of carbachol from 0.3 to 3 microM elevated cyclic GMP levels in electrically paced rabbit atrial strips by 75 to 200% and decreased contractile force in the strips by 30 to 60%. Pretreatment of the muscles for 10 min with 10 microM LY83583 significantly lowered resting cyclic GMP levels and completely blocked the elevation of cyclic GMP by these concentrations of carbachol. However, the negative inotropic effects of carbachol were not blocked by the LY83583. These results indicate that the negative inotropic effects of carbachol in rabbit atrium are not mediated by increases in tissue levels of cyclic GMP.  相似文献   

16.
Isolated adrenocortical carcinoma cells of rat contain alpha 2- and beta-adrenergic receptors. When these cells are incubated with alpha 2-adrenergic agonists, there is a concentration-dependent increase of cyclic GMP that is blocked by the alpha 2-adrenergic antagonist yohimbine but not by the beta-antagonist propranolol. Concomitantly, both p-aminoclonidine (20 microM) and clonidine (100 microM), the alpha 2-adrenergic agonists, stimulate membrane guanylate cyclase activity. In calcium free medium there is no alpha 2-agonist-dependent increase in cyclic GMP. Isoproterenol, a beta-agonist, and forskolin cause an increase in cyclic AMP but not cyclic GMP. The cyclic AMP increase induced by isoproterenol is blocked by propranolol but not by yohimbine. Isoproterenol- and forskolin-dependent increases in cyclic AMP are inhibited by p-aminoclonidine and the inhibition is relieved by yohimbine. These results indicate a dual regulation of guanylate cyclase and adenylate cyclase by the alpha 2-receptor signal: guanylate cyclase is coupled to the receptor in a positive fashion, whereas adenylate cyclase is coupled in a negative fashion. Calcium is obligatory in the cyclic GMP-mediated response.  相似文献   

17.
Relaxation of catch tension by 8-bromo-cyclic GMP in the ABRM of Mytilus was blocked in the presence of mersalyl and was markedly reduced after treatment of the muscle with alpha-methyldopa. In the muscle depolarized by 540 mM KCl + 5 mM EGTA solution, 8-bromo-cyclic GMP could not relax Ca-contracture. Hexylamine and phenylethylamine, which are assumed to relax the catch acting on relaxing nerve terminals, could not relax the contracture either. Serotonin and dopamine, which are known to relax the catch acting directly on the muscle fibre membrane, could relax it. In the muscle depolarized by 250 mM KCl + 5 mM EGTA solution, all of the cyclic nucleotides tested (cyclic AMP, cyclic GMP and their analogues), serotonin and dopamine relaxed Ca-contracture, but hexylamine and phenylethylamine did not relax the contracture. The possibilities of the involvement of cyclic GMP in the presynaptic and postsynaptic relaxing mechanisms in the ABRM are discussed.  相似文献   

18.
Catecholamines increased guanosine 3':5'-monophosphate (cyclic GMP) accumulation by isolated rat liver cells. The increases in cyclic GMP due to 1.5 muM epinephrine, isoproterenol, or phenylephrine were blocked by phenoxybenzamine but not by propranolol. The possibility that cyclic GMP is involved in the glycogenolytic action of catecholamines seems unlikely since cyclic GMP accumulation is also elevated by carbachol, insulin, A23187, and to a lesser extent by glucagon. Furthermore, carbachol had little effect on glycogenolysis while insulin actually inhibited hepatic glycogenolysis. The rise in cyclic GMP due to carbachol was abolished by atropine and that due to all agents was markedly reduced by the omission of extracellular calcium. However, the glycogenolytic action of glucagon and catecholamines was only slightly inhibited by the omission of calcium. The only agent which was unable to stimulate glycogenolysis in calcium-free buffer was the divalent cation ionophore A23187. There was a drop in ATP content of liver cells during incubation in calcium-free buffer which was accompanied by an inhibition of glucagon-activated adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The presence of calcium inhibited the rise in adenylate cyclase activity of lysed rat liver cells due to glucagon or isoproterenol but not that due to fluoride. These results suggest that the stimulation by catecholamines and glucagon of glycogenolysis is not mediated through cyclic GMP nor does it depend on the presence of extracellular calcium. Cyclic GMP accumulation was increased in liver cells by agents which either inhibit, have little affect, or accelerate glycogenolysis. The significance of elevations of cyclic GMP in rat liver cells remains to be established.  相似文献   

19.
Regulation of cyclic GMP levels in nerve tissue   总被引:2,自引:0,他引:2  
In rat superior cervical ganglia the regulation of cyclic GMP (cGMP) formation does not involve muscarinic or adrenergic transmitters or receptors. Marked increases in cGMP content during preganglionic axonal stimulation by electric currents, elevated K+, or drugs that cause transmitter release are unaffected by muscarinic and adrenergic receptor blockade. However, the cGMP response does require Ca2+ and intact preganglionic axonal terminals. Two possibilities exist: either cGMP accumulates in the preganglionic nerves or a noncholinergic, nonadrenergic transmitter activates guanylate cyclase in postsynaptic structures. Sodium azide and nitroprusside cause cGMP accumulation in denervated ganglia, which indicates that postsynaptic structures are capable of forming cGMP. In pineal glands elevated [K+]o releases [3H]norepinephrine and causes cGMP accumulation, which suggests a relationship between the two responses and the possibility that cGMP accumulation is involved in autoinhibition of transmitter release. The finding that phentolamine, alpha-adrenergic receptor antagonists, prevent the cGMP response to K+ is compatible with this review. However, clonidine, an alpha-receptor agonist, depresses norepinephrine release but has no effect on pineal gland cGMP. Conversely, large increases in pineal gland cGMP produced by nitroprusside do not affect K+-evoked norepinephrine release. For these reasons it is not possible to relate cGMP to the auto-inhibition of [3H]norepinephrine release that is mediated by prejunctional alpha-adrenergic receptors.  相似文献   

20.
Serotonin produced a 6 to 10 fold increase of cyclic GMP over baseline levels of this nucleotide in platelets. Maximum stimulation was reached within 30 sec to 1 min after addition of serotonin and was dependent upon its concentration in the medium. Inhibition of serotonin uptake by methysergide, dihydroergotamine and chloroimipramine did not influence the serotonin-induced stimulation of cyclic GMP but glutaraldehyde and formaldehyde blocked it completely. Cyclic AMP levels in platelets were not affected by serotonin. The serotonin-induced stimulation of cyclic GMP is independent of the uptake of this biogenic amine by platelets and is not due to platelet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号