首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L I Larsson 《Histochemistry》1978,56(3-4):245-251
Rat antral gastrin cells have been shown to contain ACTH-like immunoreactivity. Studies on the ontogeny of the antral gastrin cells reveal that these cells start to store gastrin before they contain detectable quantities of ACTH-like immunoreactivity. At no stage studied were duodenal gastrin cells found to contain ACTH-like peptides. The data indicate that the G cells synthetizes and/or releases the two hormonal peptides independently.  相似文献   

2.
Summary Rat antral gastrin cells have been shown to contain ACTH-like immunoreactivity. Studies on the ontogeny of the antral gastrin cells reveal that these cells start to store gastrin before they contain detectable quantities of ACTH-like immunoreactivity. At no stage studied were duodenal gastrin cells found to contain ACTH-like peptides. The data indicate that the G cells synthetizes and/or releases the two hormonal peptides independently.  相似文献   

3.
Summary Immunocytochemistry reveals ACTH-like immunoreactivity to reside not only in the pituitary but also in central nerves and in antral gastrin cells. In all probability, the central nerves store a peptide identical with or closely resembling true ACTH. Their pattern of distribution is, in some regions, similar to that of enkephalin-immunoreactive nerves. The antiserum demonstrating ACTH-like immunoreactivity in central nerves and in antral gastrin cells is directed towards the COOH-terminal part of the hormone. A peptide corresponding to this part, the corticotrophin-like intermediate peptide (CLIP) is manufactured by the pars intermedia of the pituitary. CLIP is devoid of adrenocortical activity but has recently been shown to possess insulin-releasing activity. The occurrence of CLIP-like peptides in antral gastrin cells may indicate a role for such peptides in the gastrointestinal regulation of insulin release. The simultaneous occurrence of enkephalin-like and ACTH-like immunoreactivity in the antral gastrin cells is of particular interest since a large precursor molecule, containing both the enkephalin and the ACTH sequence has recently been identified.  相似文献   

4.
L I Larsson 《Histochemistry》1978,55(3):225-233
Immunocytochemistry reveals ACTH-like immunoreactivity to reside not only in the pituitary but also in central nerves and in central nerves and in antral gastrin cells. In all probability, the central nerves store a peptide identical with or closely resembling true ACTH. Their pattern of distribution is, in some regions, similar to that of enkephalin-immunoreactive nerves. The antiserum demonstrating ACTH-like immunoreactivity in central nerves and in antral gastrin cells is directed towards the COOH-terminal part of the hormone. A peptide corresponding to this part, the corticotrophin-like intermediate peptide (CLIP) is manufactured by the pars intermedia of the pituitary. CLIP is devoid of adrenocortical activity, but has recently been shown to possess insulin-releasing activity. The occurrence of CLIP-like peptides in antral gastrin cells may indicate a role for such peptides in the gastrointestinal regulation of insulin release. The simultaneous occurrence of enkephalin-like and ACTH-like immunoreactivity in the antral gastrin cells is of particular interest since a large precursor molecule, containing both the enkephalin and the ACTH sequence has recently been identified.  相似文献   

5.
The effect of intragastric administration of acetylcholine on serum and antral gastrin concentrations of rats has been examined using a radioimmunoassay and quantitative electron microscopy. Exposure of the stomach of rats, previously fasted for 24h, to 2% acetylcholine for either 0.5 or 2h resulted in a significant 4--5 fold increase in serum gastrin concentrations to levels similar to those found in fed animals. Such treatment produced no detectable change in antral gastrin concentration or in the number or electron density of secretory granules in the G cells. This lack of detectable change in the G cells was not unexpected since our calculations suggest that less than 10% of the total gastrin stored in the antrum is released over 2h as a result of the stimulation with acetylcholine. The proportion of electron-lucent secretory granules was, however, markedly increased by prolonged fixation in aldehydes. The increase was similar in both ACh stimulated and control animals. These results indicate that the ultrastructural appearance of G cell secretory granules in influenced far more by the conditions of fixation than by the release of gastrin. They therefore cast considerable doubt on the hypothesis that gastrin is released by molecular dispersion from the granules.  相似文献   

6.
Summary The gastrin-producing cells in the cat have been studied under various experimental conditions indicating the secretory cycle of these cells. Normal gastrin cells in animals fed ad libitum show secretory granules of different electron density. After fasting for 24 hrs the cells are granulated with electron dense secretory granules and after refeeding the cells are degranulated, showing clear secretory granules. The implication of the endoplasmic reticulum and the Golgi apparatus in the secretory cycle is discussed on the basis of the ultrastructural findings.Supported by a grant from the Fonds national suisse de la Recherche scientifique, Berne, Switzerland.  相似文献   

7.
Summary The development and cytodifferentiation of endocrine cells that produce the gastrointestinal hormones gastrin, cholecystokinin and secretin have been studied by a combined fluorescence-cytochemical, immunocytochemical and ultrastructural approach. The results show that, during development, several ultrastructurally distinct cell types exhibit COOH-terminal gastrin and cholecystokinin immunoreactivity. Furthermore, some cells simultaneously contain both gastrin- and cholecystokinin-specific antigenic determinants. Studies on the time course of development of gastrin and cholecystokinin cells, together with the above-mentioned data, suggest that gastrin cells may be converted into cholecystokinin cells in development. During this period, gastrin, cholecystokinin and secretin cells store the biogenic monoamine, 5-hydroxytryptamine a feature not displayed by the adult counter-parts of these cells. In the adult duodenum, characteristic enterochromaffin (EC) cells store 5-hydroxytryptamin for which, evidence for a possible hormonal role has been presented. Taken together, our data indicate that the differentiation of duodenal endocrine cells occurs in distinct steps, each involving a restriction in the biosynthetic repertoire of the cell.  相似文献   

8.
Summary Using a monoclonal antibody (LK2H10) directed against human chromogranin, we have been able to localize this soluble glycoprotein to the matrix of secretory granules from a wide variety of endocrine cells. In the gut, enterochromaffin, enteroglucagon, glucose-dependent insulinotropic peptide, gastrin, and neurotensin-containing cells exhibit chromogranin immunoreactivity. In our system, chromogranin-immunoreactive material was restricted to the halo of human pancreatic glucagon-containing secretory granules within A-cells. Chromogranin immunoreactivity was also localized to secretory granules in phaeochromocytomas, gastrinomas, medullary carcinomas of the thyroid and a carotid body tumour (chemodectoma). Chromogranin is proposed as a potential marker for the ultrastructural recognition of endocrine cell secretory granules.  相似文献   

9.
Summary On the basis of staining results in closely related semi-thin sections from rat antral mucosa immunostained with polyclonal serotonin antibodies and silver-stained for the argentaffin reaction, respectively, three different cell populations could be distinguished. One of these cell populations showed both serotonin immunoreactivity and an argentaffin reaction, a second one serotonin immunoreactivity alone, and a third one only an argentaffin reaction.These cell populations were studied electron microscopically in ultra-thin sections located between the stained semi-thin sections. The cell population displaying an agentaffin reaction and serotonin immunoreactivity showed secretory granules of the enterochromaffin cell type. A similar granular appearance was observed in cells which only exhibited an argentaffin reaction. Serotonin immunoreactivity in the absence of an argentaffin reaction was evident in some G (gastrin) cells. and in some D1 and possibly also some D (somatostatin) cells; but not all the endocrine cells of the non-enterochromaffin type displayed serotonin immunoreactivity. The significance of the different reactions in the three cell populations is discussed.  相似文献   

10.
Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33-49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense "halo" of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophys. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

11.
The presence of FMRF-amide, a cardioactive tetrapeptide, was studied by immunocytochemistry in human and rat gastric antrum and pancreas, and in the ovine, bovine, canine and rabbit pancreas. In human and rat gastric antrum, numerous cells contained FMRF-amide immunoreactive material. By staining of serial sections and by double staining, colocalization of immunoreactivity for gastrin and FMRF-amide was observed in part of the gastrin cells. In the pancreas of these and the other species, immunoreactivity for FMRF-amide was located both in acinar and islet endocrine cells. Colocalization of FMRF-amide and pancreatic polypeptide was found in a proportion of pancreatic polypeptide cells in the pancreas. FMRF-amide immunoreactivity never colocalized with the other neurohormonal peptides which occur in the gastric antrum and the pancreas. Our observations show that neuroendocrine cells occur in the gastric antrum and pancreas which are exclusively immunoreactive or gastrin and for pancreatic polypeptide respectively. In addition cells occur which show immunoreactivity for FMRF-amide as well as for gastrin in the gastric antrum and with antiserum to FMRF-amide as well as for pancreatic polypeptide in the pancreas. It is concluded that FMRF-amide antibodies probably recognize a substance in G and PP cells which is not identical but may be structurally related to gastrin and pancreatic polypeptide.  相似文献   

12.
Chromogranins (Cg) and secretogranins (Sg) are acidic proteins localized in the secretory granules of a large variety of endocrine cells collectively named APUD cells (amine precursor uptake and decarboxylation). To examine the possible function of Cg/Sg as amine storage proteins, enteroendocrine cells of the rat gastric antral mucosa, i.e., serotonin-containing enterochromaffin (EC)-cells, gastrin (G)-, and somatostatin (D)-cells, were investigated immunohistochemically in serial semi-thin sections of controls and after intervention in serotonin synthesis. CgA and CgB immunoreactivity was determined semiquantitatively by optical density measurements. Experiments included inhibition of serotonin synthesis by p-chlorophenylalanine (pCPA), exogenous application of the serotonin precursor 5-hydroxytryptophan (5-HTP), and a combination of both treatments. The cellular distribution of Cg and the density of its immunoreactivity were closely related to the primary content of serotonin and the ability to store serotonin after 5-HTP application. Thus, Cg may act as amine-binding proteins in enteroendocrine cells, binding most probably being due to ionic interactions between Cg and the biogenic amines. EC- and G-cells, however, differed in their amine-handling properties and in the response of their Cg immunoreactivity after intervention in serotonin synthesis. We conclude, therefore, that the physiological function of Cg as amine storage proteins is restricted to endocrine cells with an endogenous content of amines. In other endocrine cells, exhibiting only a potential amine production, APUD may be considered as a kind of supravital staining without physiological significance.  相似文献   

13.
Both neuronal and endocrine cells contain secretory vesicles that store and release neurotransmitters and peptides. Neuronal cells release their secretory material from both small synaptic vesicles and large dense-core vesicles (LDCVs), whereas endocrine cells release secretory products from LDCVs. Neuronal small synaptic vesicles are known to express three integral membrane proteins: 65,000 calmodulin-binding protein (65-CMBP) (p65), synaptophysin (p38), and SV2. A controversial question surrounding these three proteins is whether they are present in LDCV membranes of endocrine and neuronal cells. Sucrose density centrifugation of adrenal medulla was performed to study and compare the subcellular distribution of two of these small synaptic vesicle proteins (65-CMBP and synaptophysin). Subsequent immunoblotting and 125I-Protein A binding experiments performed on the fractions obtained from sucrose gradients showed that 65-CMBP was present in fractions corresponding to granule membranes and intact chromaffin granules. Similar immunoblotting and 125I-Protein A binding experiments with synaptophysin antibodies showed that this protein was also present in intact granules and granule membrane fractions. However, an additional membrane component, equilibrating near the upper portion of the sucrose gradient, also showed strong immunoreactivity with anti-synaptophysin and high 125I-Protein A binding activity. In addition, immunoblotting experiments on purified plasma and granule membranes demonstrated that 65-CMBP was a component of both membranes, whereas synaptophysin was only present in granule membranes. Thus, there appears to be a different subcellular localization between 65-CMBP and synaptophysin in the chromaffin cell.  相似文献   

14.
Summary By light and electron microscopy investigation of the human gastric mucosa five types of ultrastructurally different endocrine cells have been detected: 5-hydroxytryptamine storing enterochromaffin (EC) cells, gastrin storing G cells, and functionally undefined ECL, D and D1 cells. By direct application of Masson's argentaffin reaction as well as of Sevier-Munger's and Grimelius' argyrophil method to electron microscopy specimens, selective deposition of silver grains upon the endocrine granules of such cells was obtained. In particular, only EC cell granules reacted to the argentaffin method, granules of both EC and ECL cells heavily reacted to Sevier-Munger's technique, granules of EC, ECL, G and D1 cells reacted to Grimelius' technique, while D cell granules failed to react either to argentaffin or argyrophil methods. By the application of the same silver methods to paraffin sections as well as by other selective staining methods for endocrine granules (5-hydroxytryptamine techniques, lead-haematoxylin, HCl-basic dye method), at least four of the above cell types were also identified under light microscope. This opens the way for extensive studies of such cells in conventional histologie specimens.This investigation was supported in part by grant N.70.01022.04 from the Italian Consiglio Nazionale delle Ricerche.  相似文献   

15.
Summary The ultrastructure and certain cytochemical parameters of endocrine cells of the rat gastric mucosa during 168 h of fasting were investigated. To some of the fasting animals peroral food or alcohol was administered before decapitation.The EC (enterochromaffin cells) the ECL (enterochromaffin-like cells), D1 cells, AL (A-like cells) and G cells were identified by means of electron microscopy. Only the EC, ECL, and G cells could be identified by means of light microscopy by an adequate histochemical technique.The ultrastructural picture of the ECL and of the EC cells did not change markedly during the fasting. In the D1 cells there occurred an agglomeration of secretory granules. Some of them disintegrated and disappeared. In the AL cells an agglomeration of granules during the fasting was also observed. Granules engulfed in lysosomes were often found. The participation of lysosomes in the degradation of granules during the fasting was more marked in the AL cells than in the G cells. The participation of lysosomes was questionable in the EC and D1 cells, and in the ECL cells no lysosomes were observed. In contradistinction to the G cells of the non-fasting animals, where more than one half of the gastrin granules were empty, the G cells during the fasting were filled with agglomerated dense granules and contained lysosomes with fragments of engulfed secretory granules.Following the administration of food (Larsen's diet) 3 h before sacrificing the dissolution of the content of granules with well preserved membranes was observed (emiocytosis did not take place). The administration of food did not lead to changes in the ultrastructural appearance of the EC cells. The peroral administration of alcohol did not lead to any changes in the ultrastructural appearance of the AL and G cells.  相似文献   

16.
Antral, duodenal, and serum gastrin levels and colonic thymidine kinase activity were determined in 1- to 4-day-fasted rats and after refeeding of 4-day-fasted rats for 3-24 h. The effect of pentagastrin on colonic thymidine kinase activity was also determined. Total deprivation of food caused a drastic reduction in gastrin concentrations in serum and tissues. After 4 days of fasting, serum gastrin levels in most animals fell below the present detection limit of the assay (10-15 pg/ml), and antral and duodenal gastrin levels decreased to 15 and 50% of the respective initial fed control. After 9 and 24 h of refeeding, gastrin concentration in serum and antrum had increased to about 35% of the initial fed level. On the other hand, refeeding for 3-24 h produced no significant change in duodenal gastrin concentration. Fasting for 1-4 days resulted in a 60-70% reduction in colonic thymidine kinase activity, compared to the initial fed control. Refeeding caused a prompt stimulation in the enzyme activity, which after 6 h was found to be 72% above the 4-day-fasted group. Daily injection of pentagastrin, at doses between 125 and 500 micrograms/kg, during a 4-day fasting period resulted in a significant stimulation in colonic thymidine kinase activity, compared to the saline-treated control. The maximal stimulation of an enzyme activity 90% higher than in the saline control was attained with a pentagastrin dose of 125 micrograms/kg. Higher doses decreased the maximal stimulatory effect of pentagastrin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Summary Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33–49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense halo of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophs. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

18.
A classical distinction between endocrine cells and neurons cannot be accepted without exception. This dichotomy was first challenged by the concept of neurosecretion. Recent observations indicate that hormone synthesis takes place in many extraendocrine tissues since the gene expression for prohormone synthesis seems to be common for all eukaryotes although the secretion of biological active hormone products is limited by posttranslational processing for differentiated cells. Increasing number of data support the view that regulation of pituitary hormone secretion is under multifactorial control in addition to specific signaling molecular effects of hormone-releasing hormones. Such modulators are co-secreted messengers from hypothalamic sources or co-functioning at the pituitary cell level. Multichannel regulation of pituitary tropic hormones appears to be important for understanding the interactions of pharmacological agents with pituitary hormone release, on the one hand, and the modulation of hormone release in pathological conditions, on the other hand. Perinatal transient hazards may induce permanent alterations in adaptive behavior when tested in adult age. Corticosteroid-induced deviation of avoidance behavioral reactions may be opposed by simultaneous administration of ACTH-like peptides. These observations revealed that a balance of the glucocorticoids and ACTH-like peptides in perinatal period basically determine the adaptative reaction of animals in adult age. Immune system may be called as a mobile brain since its tremendous information capacity and its responsiveness to alterations of chemical environmental signals. Recent data support the view that there is a bidirectional communication between the neuro-endocrine adaptational axis and the immune system. Stress hormones can alter the immune response and mononuclear cells produce factors that change the neuroendocrine regulation. In addition to these, prohormones are synthesized in mononuclear cells that may be involved in regulation of signalization between cells and in activation of endocrine system and brain functions.  相似文献   

19.
The effect of short-term (7 days) total parenteral nutrition (TPN) on gastrin release was studied in vivo and in the isolated vascularly perfused rat stomach. The daily plasma gastrin concentration of parenterally fed rats was significantly lower than in ad lib fed control animals (53 +/- 17 pg/ml vs 159 +/- 32 pg/ml, P less than 0.05) as early as day 2 and a similar pattern was observed on days 4 and 6. The fasting plasma gastrin concentration of control animals was 2-fold greater than of the parenterally fed group (P less than 0.05). Following oral peptone, the gastrin response of TPN and control animals doubled although peak gastrin levels were greatly reduced in TPN rats. Basal gastrin release from the perfused stomachs of control rats was 2-fold greater than from TPN rats (P less than 0.05). Electrical stimulation of the vagal trunks resulted in a significantly greater elevation in gastrin secretion from control stomachs compared to TPN animals (4-fold vs. 2.4-fold increase, P less than 0.05). Quantification of the antral G-cell population revealed a significant reduction in the number of G-cell of TPN rats compared to controls (97 +/- 8 cells/mm vs 76 +/- 6 cells/mm, P less than 0.05). These results indicate that luminal nutrient stimulation is necessary for the maintenance of normal G-cell secretory activity in vivo and from the in vitro stomach. G-cell hypoplasia appears to be partially responsible for reduced gastrin output to basal and stimulated conditions after TPN.  相似文献   

20.
Summary The presence of FMRF-amide, a cardioactiv tetrapeptide, was studied by immunocytochemistry in human and rat gastric antrum and pancreas, and in the ovine, bovine, canine and rabbit pancreas. In human and rat gastric antrum, numerous cells contained FMRF-amide immunoreactive material. By staining of serial sections and by double staining, colocalization of immunoreactivity for gastrin and FMRF-amide was observed in part of the gastrin cells. In the pancreas of these and the other species, immunoreactivity for FMRF-amide was located both in acinar and islet endocrine cells. Colocalization of FMRF-amide and pancreatic polypeptide was found in a proportion of pancreatic polypeptide cells in the pancreas. FMRF-amide immunoreactivity never colocalized with the other neurohormonal peptides which occur in the gastric antrum and the pancreas.Our observations show that neuroendocrine cells occur in the gastric antrum and pancreas which are exclusively immunoreactive or gastrin and for pancreatic polypeptide respectively. In addition cells occur which show immunoreactivity for FMRF-amide as well as for gastrin in the gastric antrum and with antiserum to FMRF-amide as well as for pancreatic polypeptide in the pancreas. It is concluded that FMRF-amide antibodies probably recognize a substance in G and PP cells which is not identical but may be structurally related to gastrin and pancreatic polypeptide.In honour of Prof. P. van Duijn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号