首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequence of pheW; a third gene for E. coli tRNAPhe.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

2.
Partial deletions in the immunity gene of the colicin E3 operon were used to study possible functions of the immunity protein besides protection against exogenous colicin. Nuclease BAL-31 was used to create a series of carboxyl-terminal deletions of the immunity gene. Mutants displaying lowered immunity against exogenous colicin were found, and six that had reduced but detectable levels of immunity were chosen for further analysis. DNA sequence analysis of the deletions showed that all six terminated within the last five codons of the immunity gene. The wild-type immunity gene was replaced by each of the six mutated immunity genes in a plasmid containing an otherwise functional colicin E3 operon. Transformants containing the resulting plasmids produced smaller colonies on solid medium and grew more slowly in liquid culture than transformants carrying the wild-type colicin and immunity genes. This result suggested that immunity protein was required to protect the cell against endogenous colicin E3. This idea was confirmed in experiments in which the colicin E3 and immunity genes were independently cloned on two compatible plasmid vectors.  相似文献   

3.
Purification and properties of colicin E3 immunity protein   总被引:24,自引:0,他引:24  
  相似文献   

4.
H Masaki  A Akutsu  T Uozumi  T Ohta 《Gene》1991,107(1):133-138
Plasmid immunity to a nuclease-type colicin is defined by the specific binding of an immunity (or inhibitor) protein, Imm, to the C-terminal nuclease domain, T2A, of the colicin molecule. Whereas most regions of colicin operons exhibit extensive sequence identity, the small plasmid region encoding T2A and Imm is exceptionally varied. Since immunity is essential for the survival of the potentially lethal colicin plasmid (Col), we inferred that T2A and Imm must have co-evolved, retaining their mutual binding specificities. To evaluate this co-evolution model for the col and imm genes of ColE3 and ColE6, we attempted to obtain a stabilized clone from a plasmid which had been destabilized with a non-cognate immunity gene. A hybrid Col, in which the immE3 gene of the ColE3 was replaced with immE6 from ColE6, was lethal to the host cells upon SOS induction. From among this suicidal cell population, we isolated a stabilized, i.e., evolved, clone which produced colicin E3 (E3) stably and exhibited immunity to E3. This change arose from only a single mutation in ImmE6, from Trp48 to Cys, the same residue as in the ImmE3 sequence. In addition, we constructed a series of chimeric genes through homologous recombination between immE3 and immE6. Characterization of these chimeric immunity genes confirmed the above finding that colicins E3 and E6 are mostly distinguished by only Cys48 of the ImmE3 protein.  相似文献   

5.
6.
BACKGROUND: The cytotoxicity of most ribonuclease E colicins towards Escherichia coli arises from their ability to specifically cleave between bases 1493 and 1494 of 16S ribosomal RNA. This activity is carried by the C-terminal domain of the colicin, an activity which if left unneutralised would lead to destruction of the producing cell. To combat this the host E. coli cell produces an inhibitor protein, the immunity protein, which forms a complex with the ribonuclease domain effectively suppressing its activity. RESULTS: We have solved the crystal structure of the cytotoxic domain of the ribonuclease colicin E3 in complex with its immunity protein, Im3. The structure of the ribonuclease domain, the first of its class, reveals a highly twisted central beta-sheet elaborated with a short N-terminal helix, the residues of which form a well-packed interface with the immunity protein. CONCLUSIONS: The structure of the ribonuclease domain of colicin E3 is novel and forms an interface with its inhibitor which is significantly different in character to that reported for the DNase colicin complexes with their immunity proteins. The structure also gives insight into the mode of action of this class of enzymatic colicins by allowing the identification of potentially catalytic residues. This in turn reveals that the inhibitor does not bind at the active site but rather at an adjacent site, leaving the catalytic centre exposed in a fashion similar to that observed for the DNase colicins. Thus, E. coli appears to have evolved similar methods for ensuring efficient inhibition of the potentially destructive effects of the two classes of enzymatic colicins.  相似文献   

7.
8.
Crystals of the colicin E3-immunity protein complex have been grown from solutions of citrate at pH 5.6. The crystals are monoclinic, space group P2(1), with unit cell dimensions a = 67.71, b = 196.67, c = 85.58 A, and beta = 113.67 degrees. The crystals diffract to 3-A resolution and are stable in the x-ray beam for at least a day. Although the stoichiometry of the complex in solution is 1:1 there are two, three, or four such binary complex molecules in the asymmetric unit.  相似文献   

9.
Proteins conferring immunity against pore-forming colicins are localized in the Escherichia coli inner membrane. Their protective effects are mediated by direct interaction with the C-terminal domain of their cognate colicins. Cai, the immunity protein protecting E. coli against colicin A, contains four cysteine residues. We report cysteine cross-linking experiments showing that Cai forms homodimers. Cai contains four transmembrane segments (TMSs), and dimerization occurs via the third TMS. Furthermore, we observe the formation of intramolecular disulfide bonds that connect TMS2 with either TMS1 or TMS3. Co-expression of Cai with its target, the colicin A pore-forming domain (pfColA), in the inner membrane prevents the formation of intermolecular and intramolecular disulfide bonds, indicating that pfColA interacts with the dimer of Cai and modifies its conformation. Finally, we show that when Cai is locked by disulfide bonds, it is no longer able to protect cells against exogenous added colicin A.  相似文献   

10.
11.
Immunity protein, an inhibitor of the ribonuclease activity of the protein antibiotic colicin E3, crystallizes in the orthorhombic space group C222 with cell dimensions a = 78·7 A?, b = 54·1 A?, c = 36·1 A? and one molecule of Mr 9800 per asymmetric unit. The crystals are suitable for high resolution X-ray analysis.  相似文献   

12.
A DNA fragment containing only the putative immunity gene-coding sequence was cloned under the control of the trp and lambda PL promoters, generating pRKA11 and pIPL, respectively. Escherichia coli hosts containing either construction were immune to colicin E1. Cells harboring both pIPL and pNT204, which encodes a temperature-sensitive cI repressor, were sensitive to colicin E1 at 30 degrees C, but became immune after 0.5 h of incubation at 42 degrees C. In addition, pRKA11 directed the synthesis of a 14.5-kDA protein in maxicells, identical to that found with the wild-type immunity gene. This evidence identifies unequivocally the coding sequence of the immunity gene as that extending from bases 1214 to 1552 [OKA, A., et al., Mol. Gen. Genet. 172, 151-159 (1979)]. The entire immunity gene operon was also cloned under the control of the tac promoter, generating pTCU2, which, upon induction with isopropyl beta-D-thiogalactopyranoside, produced the imm gene product in amounts sufficient to be visualized by autoradiography.  相似文献   

13.
Summary A small ColE1 derivative, pAO2, which replicates like the original ColE1 and confers immunity to colicin E1 on its host cell has been constructed from a quarter region of ColE1 DNA (Oka, 1978). The entire nucleotide sequence of pAO2 (1,613 base pairs) was determined based on its fine cleavage map. The sequence of a similar plasmid, pAO3, carrying additional 70 base pairs was also deduced.The sequence in the region covering the replication initiation site on these plasmids was consistent with those reported for ColE1 by Tomizawa et al. (1977) and by Bastia (1977). DNA sequences indispensable for autonomous replication were examined by constructing plasmids from various restriction fragments of pAO2 DNA. As a result, a region of 436 base pairs was found to contain sufficient information to permit replication. The occurrence of initiation and termination codons and of the ribosome-binding sequence on pAO2 DNA suggests that a polypeptide chain consisting of 113 amino acid residues may be encoded by the region in which the colicin E1 immunity gene has been mapped.Abbreviations ColE1 colicin E1 plasmid - Tris tris-(hydroxymethyl)aminomethane - EDTA ethylenediaminetetraacetate - dNTP deoxyribonucleoside triphosphates - ATP adenosine 5-triphosphate  相似文献   

14.
Nucleotide sequence of a variant antifreeze protein gene.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

15.
Bacteriocins are proteins secreted by many bacterial cells to kill related bacteria of the same niche. To avoid their own suicide through reuptake of secreted bacteriocins, these bacteria protect themselves by co-expression of immunity proteins in the compartment of colicin destination. In Escherichia coli the colicin M (Cma) is inactivated by the interaction with the Cma immunity protein (Cmi). We have crystallized and solved the structure of Cmi at a resolution of 1.95? by the recently developed ab initio phasing program ARCIMBOLDO. The monomeric structure of the mature 10kDa protein comprises a long N-terminal α-helix and a four-stranded C-terminal β-sheet. Dimerization of this fold is mediated by an extended interface of hydrogen bond interactions between the α-helix and the four-stranded β-sheet of the symmetry related molecule. Two intermolecular disulfide bridges covalently connect this dimer to further lock this complex. The Cmi protein resembles an example of a 3D domain swapping being stalled through physical linkage. The dimer is a highly charged complex with a significant surplus of negative charges presumably responsible for interactions with Cma. Dimerization of Cmi was also demonstrated to occur in vivo. Although the Cmi-Cma complex is unique among bacteria, the general fold of Cmi is representative for a class of YebF-like proteins which are known to be secreted into the external medium by some Gram-negative bacteria.  相似文献   

16.
17.
The nucleotide sequence of a 2.4 kb Dral-EcoRV fragment of pColD-CA23 DNA was determined. The segment of DNA contained the colicin D structural gene (cda) and the colicin D immunity gene (cdi). From the nucleotide sequence it was deduced that colicin D had a molecular weight of 74683D and that the immunity protein had a molecular weight of 10057D. The amino-terminal portion of colicin D was found to be 96% homologous with the same region of colicin B. Both colicins share the same cell-surface receptor, FepA, and require the TonB protein for uptake. A putative TonB box pentapeptide sequence was identified in the amino terminus of the colicin D protein sequence. Since colicin D inhibits protein synthesis, it was unexpected that no homology was found between the carboxy-terminal part of this colicin and that of the protein synthesis inhibiting colicin E3 and cloacin DF13. This could indicate that colicin D does not function in the same manner as the latter two bacteriocins. The observed homology with colicin B supports the domain structure concept of colicin organization. The structural organization of the colicin operon is discussed. The extensive amino-terminal homology between colicins D and B, and the strong carboxy-terminal homology between colicins B, A, and N suggest an evolutionary assembly of colicin genes from a few DNA fragments which encode the functional domains responsible for colicin activity and uptake.  相似文献   

18.
BACKGROUND: Colicins are antibiotic-like proteins of Escherichia coli that kill related strains. Colicin E3 acts as an RNase that specifically cleaves 16S rRNA, thereby inactivating the ribosomes in the infected cell. The producing organism is protected against colicin E3 by a specific inhibitor, the immunity protein Im3, which forms a tight 1:1 complex with colicin E3 and renders it inactive. Crystallographic studies on colicin E3 and Im3 have been undertaken to unravel the structural basis for the ribonucleolytic activity and its inhibition. RESULTS: The crystal structure of Im3 has been determined to a resolution of 1.8 A. The structure consists of a four-standard antiparallel beta sheet flanked by three alpha helices on one side of the sheet. Thr7, Phe9, Phe16 and Phe74 form a hydrophobic cluster on the surface of the protein in the vicinity of Cys47. This cluster is part of a putative binding pocket which also includes nine polar residues. CONCLUSIONS: The putative binding pocket of Im3 is the probable site of interaction with colicin E3. The six acidic residues in the pocket may interact with some of the numerous basic residues of colicin E3. The involvement of hydrophobic moieties in the binding is consistent with the observation that the tight complex can only be dissociated by denaturation. The structure of Im3 resembles those of certain nucleic acid binding proteins, in particular domain II of topoisomerase I and RNA-binding proteins that contain the ribonucleoprotein (RNP) sequence motif. This observation suggests that Im3 has a nucleic acid binding function in addition to binding colicin E3.  相似文献   

19.
Zakharov SD  Zhalnina MV  Sharma O  Cramer WA 《Biochemistry》2006,45(34):10199-10207
The crystal structure previously obtained for the complex of BtuB and the receptor binding domain of colicin E3 forms a basis for further analysis of the mechanism of colicin import through the bacterial outer membrane. Together with genetic analysis and studies on colicin occlusion of OmpF channels, this implied a colicin translocon consisting of BtuB and OmpF that would transfer the C-terminal cytotoxic domain (C96) of colicin E3 through the Escherichia coli outer membrane. This model does not, however, explain how the colicin attains the unfolded conformation necessary for transfer. Such a conformation change would require removal of the immunity (Imm) protein, which is bound tightly in a complex with the folded colicin E3. In the present study, it was possible to obtain reversible removal of Imm in vitro in a single column chromatography step without colicin denaturation. This resulted in a mostly unordered secondary structure of the cytotoxic domain and a large decrease in stability, which was also found in the receptor binding domain. These structure changes were documented by near- and far-UV circular dichroism and intrinsic tryptophan fluorescence. Reconstitution of Imm in a complex with C96 or colicin E3 restored the native structure. C96 depleted of Imm, in contrast to the native complex with Imm, efficiently occluded OmpF channels, implying that the presence of tightly bound Imm prevents its unfolding and utilization of the OmpF porin for subsequent import of the cytotoxic domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号