首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
丛枝菌根真菌对黄花蒿生长及药效成分的影响   总被引:3,自引:0,他引:3  
通过盆栽接种试验,研究丛枝菌根(AM)真菌对药用植物黄花蒿的生长、营养吸收和药效成分的影响.结果表明:接种摩西球囊霉和地表球囊霉增加了黄花蒿对N、P、K的吸收,及叶片叶绿素含量、净光合速率、气孔导度、蒸腾速率、茎粗和地上生物量,尤其以接种摩西球囊霉的促进作用更强;接种摩西球囊霉后植株茎、小枝和叶中的青蒿素含量分别提高了32.8%、15.2%和19.6%,接种地表球囊霉后分别提高了26.5%、10.1%和14.9%;接种摩西球囊霉和地表球囊霉的黄花蒿地上部的挥发油收油率比未接种的分别提高45.0%和25.0%,而且挥发油成分发生了改变.  相似文献   

2.
The inoculation of mycorrhizal maize plants with three isolates of microaerophilic diazotrophic bacteria obtained from the mycelium of arbuscular mycorrhizal fungi associated with three grasses (Arrhenatherum elatius - bacterial isolate ARR, Agropyrum repens - isolate AGR and Poa annua - isolate POA) caused no increase in nitrogen content in plant biomass. The inoculation with bacterial isolate ARR resulted in the decreased plant growth. Bacterial isolate AGR decreased the percentage of the root length colonized by arbuscular mycorrhizal fungus Glomus fistulosum. The inoculation with both mycorrhizal fungus and isolate POA increased significantly the concentration of phosphorus in plant shoots compared to uninoculated control. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Versaw  Wayne K.  Chiou  Tzyy-Jen  Harrison  Maria J. 《Plant and Soil》2002,244(1-2):239-245
Most vascular plants acquire phosphate from their environment either directly, via the roots, or indirectly, via a symbiotic interaction with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the plant roots where the fungi colonize the cortex of the root to obtain carbon from the plant host, while assisting the plant with acquisition of phosphate and other mineral nutrients from the soil solution. As a first step toward understanding the molecular basis of the symbiosis and phosphate utilization, we have cloned and characterized phosphate transporter genes from the AM fungi Glomus versiforme and Glomus intraradices, and from the roots of a host plant, Medicago truncatula. Expression analyses and localization studies indicate that each of these transporters has a role in phosphate uptake from the soil solution.  相似文献   

4.
植物菌根共生磷酸盐转运蛋白   总被引:1,自引:0,他引:1  
大多数植物能和丛枝菌根(arbuscular mycorrhiza, AM)真菌形成菌根共生体。AM能够促进植物对土壤中矿质营养的吸收,尤其是磷的吸收。磷的吸收和转运由磷酸盐转运蛋白介导。总结了植物AM磷酸盐转运蛋白及其结构特征,分析其分类及系统进化,并综述了AM磷酸盐转运蛋白介导的磷的吸收和转运过程及其基因的表达调控。植物AM磷酸盐转运蛋白属于Pht1家族成员,它不仅对磷的吸收和转运是必需的,而且对AM共生也至关重要,为进一步了解菌根形成的分子机理及信号转导途径提供了理论基础。  相似文献   

5.
干旱胁迫下AM真菌对油蒿叶片保护系统的影响   总被引:4,自引:0,他引:4  
基利用盆栽试验在正常水分和干旱胁迫条件下研究了灭菌土接种AM真菌摩西球囊霉(Glomus mosseae)和土著AM真菌对油(蒿Artemisia ordosica)生长及叶片保护系统的影响。结果表明,干旱胁迫显著抑制了土著AM真菌对油蒿的侵染,但对G.mosseae的侵染影响较小。正常水分和干旱胁迫条件下,接种AM真菌显著增加了油蒿生物量和干重以及根系含磷量;提高了叶绿素、可溶性糖、可溶性蛋白含量并降低了脯氨酸和丙二醛含量;显著增强了过氧化氢酶(CAT)和过氧化物酶(POD)活性,增强了油蒿对干旱的防御能力。  相似文献   

6.
The interactions between two plant growth-promoting rhizobacteria (PGPR, Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177), two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and Glomus intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; for example, the two AM fungi react differently when interacting with the same bacteria on plants. Glomus intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale-infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth-promoting microorganisms, it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to achieve satisfactory plant growth benefits.  相似文献   

7.
8.
The effects of bacterial inoculation (Bacillus sp.) on the development and physiology of the symbiosis between lettuce and the arbuscular mycorrhizal (AM) fungi Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe and Glomus intraradices (Schenck and Smith) were investigated. Plant growth, mineral nutrition and gas-exchange values in response to bacterial inoculation after PEG-induced drought stress were also evaluated. In AM plants, inoculation with Bacillus sp. enhanced fungal development and metabolism, measured as succinate dehydrogenase (SDH) and alkaline phosphatase (ALP) activities, more than plant growth. Under non-stressed conditions, G. intraradices colonization increased all plant physiological values to a higher extent when in dual inoculation with the bacterium. Under stress conditions, the bacterium had an important stimulatory effect on G. intraradices development. Under such conditions, the effects of the bacterium on photosynthetic rate, water use efficiency (WUE) and stomatal conductance of lettuce plants differed with the fungus species. Plant-gas exchange was enhanced in G. intraradices- and reduced in G. mosseae-colonized plants when co-inoculated with Bacillus sp. Thus, the effects of each fungus on plant physiology were modulated by the bacterium. Stress was detrimental, particularly in G. intraradices-colonized plants without the bacterium, reducing intra and extraradical mycelium growth and vitality (SDH), as well as plant-gas exchange. Nevertheless, Bacillus sp. inoculation improved all these plant and fungal parameters to the same level as in non-stressed plants. The highest amount of alive and active AM mycelium for both fungi was obtained after co-inoculation with Bacillus sp. These results suggest that selected free-living bacteria and AM fungi should be co-inoculated to optimize the formation and functioning of the AM symbiosis in both normal and adverse environments.  相似文献   

9.
丛枝菌根是由一类土壤中古老的丛枝菌根真菌与植物根系形成的互利互惠共生体。通过共生作用丛枝菌根真菌帮助宿主植物提高水和矿质营养(特别是磷)的吸收效率。作为回报,大约20%的光合作用产物被转移到丛枝菌根真菌中,供其完成自身的生活史。丛枝菌根形成的过程中,需要植物与丛枝菌根真菌之间进行一系列信号分子的识别、交换以及信号转导作用,这一过程由一系列植物和菌根真菌的基因控制。首先,植物会分泌一种植物激素——独角金内酯来诱导菌根真菌加速分支,而菌根真菌也会分泌脂质几丁寡糖促进植物与其形成菌根。加速分支的菌根真菌接触到植物根部以后,会附着在植物根的表皮并形成附着胞,通过附着胞穿透植物根的表皮,最后进入维管组织附近的皮层细胞并在其中不断进行二叉分支,形成特有的丛枝结构。通过对模式植物共生现象的研究,已经发现很多植物基因参与到共生形成的信号转导过程中,包括早期植物反应的基因、菌根与根瘤共生共同需要的转导因子以及菌根特异的信号分子等。本文对菌根的形成过程及信号转导途径进行详细的介绍,为人们深入研究菌根关系提供参考。  相似文献   

10.
Arbuscular mycorrhizal fungi are forming the most wide-spread mycorrhizal relationships on Earth. Mycorrhiza contributes to phosphorous acquisition, water absorption and resistance to diseases. The fungus promotes the absorption of nutrients and water from soil, meanwhile the host plant offers photosynthetic assimilates in exchange, like carbohydrates, as energy source. The plant benefits from the contribution of symbiotic partner only when nutrients are in low concentrations in soil and the root system would not be able to absorb sufficiently the minerals. When the help of mycorrhizal fungi is not necessarily needed, the host plant is making an economy of energy, suppressing the development of fungi in the internal radicular space. In this moment, the nature of relationship turns from symbiotic to parasitic, triggering a series of defensive reactions from the plant. Also, there were several cases reported when the presence of arbuscular mycorrhizal fungi negatively influenced the host plant. For example, in adverse environmental conditions, like very high temperatures, instead of determining a higher plant biomass and flowering, the mycorrhiza reduces the growth of the host plant. We conducted a pot experiment with hydroponic culture to examine the effect of arbuscular mycorrhiza on development of French marigold as a host plant. As experimental variants, the phosphorous content in nutrient medium and temperature varied. Plants were artificially infected with arbuscular mycorrhizal fungi using a commercial inoculum containing three fungal species, as following: Glomus intraradices, Glomus etunicatum and Glomus claroideum. Colonization intensity and arbuscular richness were checked using root staining with aniline blue and estimation with the Trouvelot method. To observe the differences between plants from the experimental variants, we examined the number of side shoots, flower buds and fully developed flowers, fresh biomass and total leaf area. Results show that adverse climatic conditions, like temperature shock at the beginning of growing period modified the nature of symbiosis. In this case, the physiological parameters were reduced at colonized plants, while usual, constant growing conditions permitted the normal, efficient and beneficial development of symbiosis.  相似文献   

11.
Development of arbuscular mycorrhizal (AM) symbiosis with plant root system in term of molecular and cellular events have been analysed. A role of AM symbiosis in plant life has been discussed. Molecular methods for analysis of arbuscular mycorrhizal fungi have been described.  相似文献   

12.
Tracking carbon from the atmosphere to the rhizosphere   总被引:2,自引:0,他引:2  
Turnover rates of arbuscular mycorrhizal (AM) fungi may influence storage of soil organic carbon (SOC). We examined the longevity of AM hyphae in monoxenic cultures; and we also used 13C incorporation into signature fatty acids to study C dynamics in a mycorrhizal symbiosis involving Glomus intraradices and Plantago lanceolata. 13C enrichment of signature fatty acids showed rapid transfer of plant assimilates to AM fungi and a gradual release of C from roots to rhizosphere bacteria, but at a much slower rate. Furthermore, most C assimilated by AM fungi remained 32 days after labelling. These findings indicate that 13C labelled fatty acids can be used to track C flux from the atmosphere to the rhizosphere and that retention of C in AM fungal mycelium may contribute significantly to SOC.  相似文献   

13.
徐辉  张捷 《植物研究》2007,27(5):636-640
菌根是自然界中一种极为普遍和重要的共生现象,其中分布最为广泛的菌根类型就是丛枝菌根,可以增强植物从土壤中获取水分的能力,改善植物根系对磷、镉等矿质元素及养分的吸收,从而促进植物的生长。本文综述了丛枝菌根真菌对植物生长影响的概况。有关丛枝菌根真菌对植物水分和矿质营养的利用,尤其是磷素营养的研究较为深入,而对植物光合特性的研究较少,这些研究工作为深入理解菌根真菌与植物的相互关系提供基础资料。  相似文献   

14.
Nitrogen (N) capture by arbuscular mycorrhizal (AM) fungi from organic material is a recently discovered phenomenon. This study investigated the ability of two Glomus species to transfer N from organic material to host plants and examined whether the ability to capture N is related to fungal hyphal growth. Experimental microcosms had two compartments; these contained either a single plant of Plantago lanceolata inoculated with Glomus hoi or Glomus intraradices, or a patch of dried shoot material labelled with (15)N and (13)carbon (C). In one treatment, hyphae, but not roots, were allowed access to the patch; in the other treatment, access by both hyphae and roots was prevented. When allowed, fungi proliferated in the patch and captured N but not C, although G. intraradices transferred more N than G. hoi to the plant. Plants colonized with G. intraradices had a higher concentration of N than controls. Up to one-third of the patch N was captured by the AM fungi and transferred to the plant, while c. 20% of plant N may have been patch derived. These findings indicate that uptake from organic N could be important in AM symbiosis for both plant and fungal partners and that some AM fungi may acquire inorganic N from organic sources.  相似文献   

15.
Abstract

Sucrose synthase (SuSy) is the main sucrose breakdown enzyme in plant sink tissues, including nodules, and is a possible candidate for the diversion of plant carbon to arbuscular mycorrhizal (AM) fungi in roots. We tested the involvement of SuSy in AM symbiosis of Glomus intraradices and Pisum sativum (pea). We observed that peas deficient in the predominant root isoform of SuSy were colonized successfully by AM fungi similar to wild-type roots. SuSy protein levels did not increase in roots as AM symbiosis developed, although SuSy protein levels did increase in nodules as the rhizobium symbiosis developed. Our results lead us to conclude that, unlike nodule symbiosis, SuSy protein does not limit or regulate carbon transfer in the AM symbiosis.  相似文献   

16.
Most terrestrial plants live in symbiosis with arbuscular mycorrhizal (AM) fungi. Studies on the direct interaction between plants and mycorrhizal fungi are numerous whereas studies on the indirect interaction between such fungi and herbivores feeding on aboveground plant parts are scarce. We studied the impact of AM symbiosis on host plant choice and life history of an acarine surface piercing-sucking herbivore, the polyphagous two-spotted spider mite Tetranychus urticae. Experiments were performed on detached leaflets taken from common bean plants (Phaseolus vulgaris) colonized or not colonized by the AM fungus Glomus mosseae. T. urticae females were subjected to choice tests between leaves from mycorrhizal and non-mycorrhizal plants. Juvenile survival and development, adult female survival, oviposition rate and offspring sex ratio were measured in order to estimate the population growth parameters of T. urticae on either substrate. Moreover, we analyzed the macro- and micronutrient concentration of the aboveground plant parts. Adult T. urticae females preferentially resided and oviposited on mycorrhizal versus non-mycorrhizal leaflets. AM symbiosis significantly decreased embryonic development time and increased the overall oviposition rate as well as the proportion of female offspring produced during peak oviposition. Altogether, the improved life history parameters resulted in significant changes in net reproductive rate, intrinsic rate of increase, doubling time and finite rate of increase. Aboveground parts of colonized plants showed higher concentrations of P and K whereas Mn and Zn were both found at lower levels. This is the first study documenting the effect of AM symbiosis on the population growth rates of a herbivore, tracking the changes in life history characteristics throughout the life cycle. We discuss the AM-plant-herbivore interaction in relation to plant quality, herbivore feeding type and site and the evolutionary implications in a multi-trophic context.  相似文献   

17.
西双版纳热带雨林中丛枝菌根真菌的初步研究*   总被引:9,自引:0,他引:9  
对西双版纳热带雨林中30个科的42种植物根系的丛枝菌根真菌定居情况进行了调查,并从这些植物的根际土壤中分离鉴定了分属于无梗囊霉属(Acaulospora)、球囊霉属(Glomus)和硬囊霉属(Sclerocystis)的25种丛枝菌根真菌。对热带雨林土壤中丛枝菌根真菌的孢子密度(spore density)、物种丰富度(species richness)以及已鉴定种的出现频率进行统计分析发现:热带雨林土壤中丛枝菌根真菌的孢子密度在每100g土壤116~1560个之间,平均478个;物种丰富度在2~7之间,平均为4.5;无梗囊霉属和球囊霉属真菌是热带雨林土壤中丛枝菌根真菌的优势类群。  相似文献   

18.
Mycorrhizal symbiosis can modify plant response to drying soil, but little is known about the relative contribution of soil vs. root hyphal colonization to drought resistance of mycorrhizal plants. Foliar dehydration tolerance, characterized as leaf and soil water potential at the end of a lethal drying episode, was measured in bean plants (Phaseolus vulgaris) colonized by Glomus intraradices or by a mix of arbuscular mycorrhizal fungi collected from a semi-arid grassland. Path analysis modeling was used to evaluate how colonization rates and other variables affected these lethal values. Of several plant and soil characteristics tested, variation in dehydration tolerance was best explained by soil hyphal density. Soil hyphal colonization had larger direct and total effects on both lethal leaf water potential and soil water potential than did root hyphal colonization, root density, soil aggregation, soil glomalin concentration, leaf phosphorus concentration or leaf osmotic potential. Plants colonized by the semi-arid mix of mycorrhizal fungi had lower lethal leaf water potential and soil water potential than plants colonized by G. intraradices. Our findings support the assertion that external, soil hyphae may play an important role in mycorrhizal influence on the water relations of host plants.  相似文献   

19.
Previous studies have shown that root colonization by arbuscular mycorrhiza (AM) fungi enhances plant resistance to abiotic and biotic stressors and finally plant growth. However, little is known about the effect of AM on isoprenoid foliar and root content. In this study we tested whether the AM symbiosis affects carbon resource allocation to different classes of isoprenoids such as the volatile nonessential isoprenoids (monoterpenes and sesquiterpenes) and the non-volatile essential isoprenoids (abscisic acid, chlorophylls and carotenoids). By subjecting the plants to stressors such as drought and to exogenous application of JA, we wanted to test their interaction with AM symbiosis in conditions where isoprenoids usually play a role in resistance to stress and in plant defence. Root colonization by AM fungi favoured the leaf production of essential isoprenoids rather than nonessential ones, especially under drought stress conditions or after JA application. The increased carbon demand brought on by AM fungi might thus influence not only the amount of carbon allocated to isoprenoids, but also the carbon partitioning between the different classes of isoprenoids, thus explaining the not previously shown decrease of root volatile isoprenoids in AM plants. We propose that since AM fungi are a nutrient source for the plant, other carbon sinks normally necessary to increase nutrient uptake can be avoided and therefore the plant can devote more resources to synthesize essential isoprenoids for plant growth.  相似文献   

20.
盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响   总被引:31,自引:4,他引:27  
在NaCl胁迫下无论接种AM真菌与否玉米植株生物产量均减少,但不接种处理的减少幅度比较种处理的高10个百分点左右,盐胁迫下接种AM真菌的玉米根系和地上部的干重、叶片水热均高于不接种处理、叶片脯氨酸含量低于不接种处理,在盐胁迫下真菌菌丝对玉米植株营养的贡献由45.3%降为42.6%,AM真菌对植株生长的效应反而由30.9%提高到63.5%,说明AM真菌主米耐盐性的机理与改善植株的水分状况和P营养状况  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号