首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum), which is the model acetogenic bacterium that has been widely used for elucidating the Wood-Ljungdahl pathway of CO and CO(2) fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into 3 mol of acetate and to grow autotrophically using H(2) and CO as electron donors and CO(2) as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO(2). Acetogenic bacteria also couple the Wood-Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols and aromatic compounds) and electron acceptors (CO(2), nitrate, nitrite, thiosulfate, dimethylsulfoxide and aromatic carboxyl groups). The genome consists of a single circular 2 628 784 bp chromosome encoding 2615 open reading frames (ORFs), which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. A total of 2384 (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in orthologue clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood-Ljungdahl pathway.  相似文献   

2.
3.
During the methanogenic fermentation of acetate by Methanosarcina thermophila, the CO dehydrogenase complex cleaves acetyl coenzyme A and oxidizes the carbonyl group (or CO) to CO2, followed by electron transfer to coenzyme M (CoM)-S-S-coenzyme B (CoB) and reduction of this heterodisulfide to HS-CoM and HS-CoB (A. P. Clements, R. H. White, and J. G. Ferry, Arch. Microbiol. 159:296-300, 1993). The majority of heterodisulfide reductase activity was present in the soluble protein fraction after French pressure cell lysis. A CO:CoM-S-S-CoB oxidoreductase system from acetate-grown cells was reconstituted with purified CO dehydrogenase enzyme complex, ferredoxin, membranes, and partially purified heterodisulfide reductase. Coenzyme F420 (F420) was not required, and CO:F420 oxidoreductase activity was not detected in cell extracts. The membranes contained cytochrome b that was reduced with CO and oxidized with CoM-S-S-CoB. The results suggest that a novel CoM-S-S-CoB reducing system operates during acetate conversion to CH4 and CO2. In this system, ferredoxin transfers electrons from the CO dehydrogenase complex to membrane-bound electron carriers, including cytochrome b, that are required for electron transfer to the heterodisulfide reductase. The cytochrome b was purified from solubilized membrane proteins in a complex with six other polypeptides. The cytochrome was not reduced when the complex was incubated with H2 or CO, and H2 uptake hydrogenase activity was not detected; however, the addition of CO dehydrogenase enzyme complex and ferredoxin enabled the CO-dependent reduction of cytochrome b.  相似文献   

4.
Pyruvate:ferredoxin oxidoreductase (PFOR) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and CO(2). The catalytic proficiency of this enzyme for the reverse reaction, pyruvate synthase, is poorly understood. Conversion of acetyl-CoA to pyruvate links the Wood-Ljungdahl pathway of autotrophic CO(2) fixation to the reductive tricarboxylic acid cycle, which in these autotrophic anaerobes is the stage for biosynthesis of all cellular macromolecules. The results described here demonstrate that the Clostridium thermoaceticum PFOR is a highly efficient pyruvate synthase. The Michaelis-Menten parameters for pyruvate synthesis by PFOR are: V(max) = 1.6 unit/mg (k(cat) = 3.2 s(-1)), K(m)(Acetyl-CoA) = 9 micrometer, and K(m)(CO(2)) = 2 mm. The intracellular concentrations of acetyl-CoA, CoASH, and pyruvate have been measured. The predicted rate of pyruvate synthesis at physiological concentrations of substrates clearly is sufficient to support the role of PFOR as a pyruvate synthase in vivo. Measurements of its k(cat)/K(m) values demonstrate that ferredoxin is a highly efficient electron carrier in both the oxidative and reductive reactions. On the other hand, rubredoxin is a poor substitute in the oxidative direction and is inept in donating electrons for pyruvate synthesis.  相似文献   

5.
The Wood-Ljungdahl pathway of anaerobic CO(2) fixation with hydrogen as reductant is considered a candidate for the first life-sustaining pathway on earth because it combines carbon dioxide fixation with the synthesis of ATP via a chemiosmotic mechanism. The acetogenic bacterium Acetobacterium woodii uses an ancient version of the pathway that has only one site to generate the electrochemical ion potential used to drive ATP synthesis, the ferredoxin-fueled, sodium-motive Rnf complex. However, hydrogen-based ferredoxin reduction is endergonic, and how the steep energy barrier is overcome has been an enigma for a long time. We have purified a multimeric [FeFe]-hydrogenase from A. woodii containing four subunits (HydABCD) which is predicted to have one [H]-cluster, three [2Fe2S]-, and six [4Fe4S]-clusters consistent with the experimental determination of 32 mol of Fe and 30 mol of acid-labile sulfur. The enzyme indeed catalyzed hydrogen-based ferredoxin reduction, but required NAD(+) for this reaction. NAD(+) was also reduced but only in the presence of ferredoxin. NAD(+) and ferredoxin reduction both required flavin. Spectroscopic analyses revealed that NAD(+) and ferredoxin reduction are strictly coupled and that they are reduced in a 1:1 stoichiometry. Apparently, the multimeric hydrogenase of A. woodii is a soluble energy-converting hydrogenase that uses electron bifurcation to drive the endergonic ferredoxin reduction by coupling it to the exergonic NAD(+) reduction.  相似文献   

6.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a key enzyme in the anaerobic metabolism of aromatic compounds catalyzing the ATP-driven reductive dearomatization of benzoyl-CoA. The enzyme from Thauera aromatica uses a reduced 2[4Fe-4S] ferredoxin as electron donor. In this work, we identified 2-oxoglutarate:ferredoxin oxidoreductase (KGOR) as the ferredoxin reducing enzyme. KGOR activity was increased 10- to 50-fold in T. aromatica cells grown under denitrifying conditions on an aromatic substrate compared to that of cells grown on nonaromatic substrates. The enzyme was purified from soluble extracts by a 60-fold enrichment with a specific activity of 4.8 micromol min(-1) mg(-1). The native enzyme had a molecular mass of 200 +/- 20 kDa (mean +/- standard deviation) and consisted of two subunits with molecular masses of 66 and 34 kDa, suggesting an (alphabeta)(2) composition. The UV/visible spectrum was characteristic for an iron-sulfur protein; the enzyme contained 8.3 +/- 0.5 mol of Fe, 7.2 +/- 0.5 mol of acid-labile sulfur, and 1.6 +/- 0.2 mol of thiamine diphosphate (TPP) per mol of protein. The high specificity for 2-oxoglutarate and the low K(m) for ferredoxin ( approximately 10 microM) indicated that both are the in vivo substrates of the enzyme. KGOR catalyzed the isotope exchange between (14)CO(2) and C(1) of 2-oxoglutarate, representing a typical reversible partial reaction of 2-oxoacid oxidoreductases. The two genes coding for the two subunits of KGOR were found adjacent to the gene cluster coding for enzymes and ferredoxin of the catabolic benzoyl-CoA pathway. Sequence comparisons with other 2-oxoacid oxidoreductases indicated that KGOR from T. aromatica belongs to the Halobacterium type of 2-oxoacid oxidoreductases, which lack a ferredoxin-like module which contains two additional [4Fe-4S](1+/2+) clusters/monomer. Using purified KGOR, ferredoxin, and benzoyl-CoA reductase, the 2-oxoglutarate-driven reduction of benzoyl-CoA was shown in vitro. This demonstrates that ferredoxin acts as an electron shuttle between the citric acid cycle and benzoyl-CoA reductase by coupling the oxidation of the end product of the benzoyl-CoA pathway, acetyl-CoA, to the reduction of the aromatic ring.  相似文献   

7.
Nocek B  Jang SB  Jeong MS  Clark DD  Ensign SA  Peters JW 《Biochemistry》2002,41(43):12907-12913
The NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is the terminal enzyme in a metabolic pathway that results in the conversion of propylene to the central metabolite acetoacetate in Xanthobacter autotrophicus Py2. This enzyme is an FAD-containing enzyme that is a member of the NADPH:disulfide oxidoreductase (DSOR) family of enzymes that include glutathione reductase, dihydrolipoamide dehydrogenase, trypanothione reductase, thioredoxin reductase, and mercuric reductase. In contrast to the prototypical reactions catalyzed by members of the DSOR family, the NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase catalyzes the reductive cleavage of the thioether linkage of 2-ketopropyl-coenzyme M, and the subsequent carboxylation of the ketopropyl cleavage product, yielding the products acetoacetate and free coenzyme M. The structure of 2-KPCC reveals a unique active site in comparison to those of other members of the DSOR family of enzymes and demonstrates how the enzyme architecture has been adapted for the more sophisticated biochemical reaction. In addition, comparison of the structures in the native state and in the presence of bound substrate indicates the binding of the substrate 2-ketopropyl-coenzyme M induces a conformational change resulting in the collapse of the substrate access channel. The encapsulation of the substrate in this manner is reminiscent of the conformational changes observed in the well-characterized CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxidase (Rubisco).  相似文献   

8.
Das A  Fu ZQ  Tempel W  Liu ZJ  Chang J  Chen L  Lee D  Zhou W  Xu H  Shaw N  Rose JP  Ljungdahl LG  Wang BC 《Proteins》2007,67(1):167-176
The strict anaerobic, thermophilic bacterium Moorella thermoacetica metabolizes C1 compounds for example CO(2)/H(2), CO, formate, and methanol into acetate via the Wood/Ljungdahl pathway. Some of the key steps in this pathway include the metabolism of the C1 compounds into the methyl group of methylenetetrahydrofolate (MTHF) and the transfer of the methyl group from MTHF to the methyl group of acetyl-CoA catalyzed by methyltransferase, corrinoid protein and CO dehydrogenase/acetyl CoA synthase. Recently, we reported the crystallization of a 25 kDa methanol-induced corrinoid protein from M. thermoacetica (Zhou et al., Acta Crystallogr F 2005; 61:537-540). In this study we analyzed the crystal structure of the 25 kDa protein and provide genetic and biochemical evidences supporting its role in the methanol metabolism of M. thermoacetia. The 25 kDa protein was encoded by orf1948 of contig 303 in the M. thermoacetica genome. It resembles similarity to MtaC the corrinoid protein of the methanol:CoM methyltransferase system of methane producing archaea. The latter enzyme system also contains two additional enzymes MtaA and MtaB. Homologs of MtaA and MtaB were found to be encoded by orf2632 of contig 303 and orf1949 of contig 309, respectively, in the M. thermoacetica genome. The orf1948 and orf1949 were co-transcribed from a single polycistronic operon. Metal analysis and spectroscopic data confirmed the presence of cobalt and the corrinoid in the purified 25 kDa protein. High resolution X-ray crystal structure of the purified 25 kDa protein revealed corrinoid as methylcobalamin with the imidazole of histidine as the alpha-axial ligand replacing benziimidazole, suggesting base-off configuration for the corrinoid. Methanol significantly activated the expression of the 25 kDa protein. Cyanide and nitrate inhibited methanol metabolism and suppressed the level of the 25 kDa protein. The results suggest a role of the 25 kDa protein in the methanol metabolism of M. thermoacetica.  相似文献   

9.
The anaerobic archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative-type metabolism in which H2, CO2, and organic acids are end products. The growth of this organism is stimulated by tungsten, and, from it, a novel, red-colored, tungsten-iron-sulfur protein, abbreviated RTP, has been purified (Mukund, S., and Adams, M. W. W. (1990) J. Biol. Chem. 265, 11508-11516). RTP (Mr approximately 85,000) contained approximately 1W, 7Fe, and 5 acid-labile sulfide atoms/molecule and exhibited unique EPR properties. The physiological function of the protein, however, was unknown. We show here that RTP is an inactive form of an aldehyde ferredoxin oxidoreductase (AOR). The active enzyme was obtained by rapid purification under anaerobic conditions using buffers containing dithiothreitol and glycerol. AOR catalyzed the oxidation of a range of aliphatic aldehydes with an optimum temperature for activity above 90 degrees C, but it did not oxidize glucose or glyceraldehyde 3-phosphate, nor reduce NAD(P), and its activity was independent of CoA. The active (AOR) and inactive (RTP) forms of the enzyme were indistinguishable in their contents of metals and acid-labile sulfide and in their EPR properties. The latter are though to originate from two nonidentical and spin-coupled iron-sulfur clusters, whereas the tungsten in this enzyme, which was not detectable by EPR, appears to be present as a novel pterin cofactor. Inhibition and activation studies indicated that AOR contains a catalytically essential W-SH group that is not present in RTP, the inactive form. AOR is a new type of aldehyde-oxidizing enzyme and is the first aldehyde oxidoreductase to be purified from an archaebacterium or a nonactogenic anaerobic bacterium. Its physiological role in P. furiosus is proposed as the oxidation of glyceraldehyde to glycerate in a unique, partially nonphosphorylated, glycolytic pathway that generates acetyl-CoA from glucose without the participation of nicotinamide nucleotides.  相似文献   

10.
Furdui C  Ragsdale SW 《Biochemistry》2002,41(31):9921-9937
Pyruvate:ferredoxin oxidoreductase (PFOR) catalyzes the coenzyme A (CoA)-dependent oxidative decarboxylation of pyruvate. In many autotrophic anaerobes, PFOR links the Wood-Ljungdahl pathway to glycolysis and to cell carbon synthesis. Herein, we cloned and sequenced the M. thermoacetica PFOR, demonstrating strong structural homology with the structurally characterized D. africanus PFOR, including the presence of three [4Fe-4S] clusters per monomeric unit. The PFOR reaction includes a hydroxyethyl-thiamin pyrophosphate (HE-TPP) radical intermediate, which forms rapidly after PFOR reacts with pyruvate. This step precedes electron transfer from the HE-TPP radical intermediate to an intramolecular [4Fe-4S] cluster. We show that CoA increases the rate of this redox reaction by 10(5)-fold. Analysis by Marcus theory indicates that, in the absence of CoA, this is a true electron-transfer reaction; however, in its presence, electron transfer is gated by an adiabatic event. Analysis by the Eyring equation indicates that entropic effects dominate this rate enhancement. Our results indicate that the energy of binding CoA contributes minimally to the rate increase since the thiol group of CoA lends over 40 kJ/mol to the reaction, whereas components of CoA that afford most of the cofactor's binding energy contribute minimally. Major conformational changes also do not appear to explain the rate enhancement. We propose several ways that CoA can accomplish this rate increase, including formation of a highly reducing adduct with the HE-TPP radical to increase the driving force for electron transfer. We also consider the possibility that CoA itself forms part of the electron-transfer pathway.  相似文献   

11.
Hydrogenosomes in the rumen fungus Neocallimastix patriciarum.   总被引:11,自引:1,他引:10       下载免费PDF全文
Sedimentable hydrogenase activity was demonstrated in cell-free extracts from both zoospores and vegetative growth of the anaerobic rumen fungus Neocallimastix patriciarum. Electron micrographs of the fraction enriched in hydrogenase activity contained finely granular microbody-like organelles, about 0.5 micron in diameter and having an equilibrium density of about 1.2 g X ml-1 in sucrose, 1.12 g X ml-1 in Percoll and 1.27-1.28 g X ml-1 in Metrizamide. These organelles, which are sedimentable at 10(5) g-min, bear no similarity to mitochondria, but are morphologically similar to hydrogen-evolving organelles possessed by certain anaerobic protozoa and termed 'hydrogenosomes'. Other typical hydrogenosomal enzymes, namely 'malic' enzyme, pyruvate:ferredoxin oxidoreductase and NADPH:ferredoxin oxidoreductase, were enriched in the same particle fraction as hydrogenase. The synthesis of pyruvate:ferredoxin oxidoreductase was found to be suppressed when the organism was cultured under an atmosphere of CO2, and an alternative pathway is proposed for growth under these conditions.  相似文献   

12.
Moorella thermoacetica ferments glucose to three acetic acids. In the oxidative part of the fermentation, the hexose is converted to 2 acetic acids and 2 CO(2) molecules with the formation of 2 NADH and 2 reduced ferredoxin (Fd(red)(2-)) molecules. In the reductive part, 2 CO(2) molecules are reduced to acetic acid, consuming the 8 reducing equivalents generated in the oxidative part. An open question is how the two parts are electronically connected, since two of the four oxidoreductases involved in acetogenesis from CO(2) are NADP specific rather than NAD specific. We report here that the 2 NADPH molecules required for CO(2) reduction to acetic acid are generated by the reduction of 2 NADP(+) molecules with 1 NADH and 1 Fd(red)(2-) catalyzed by the electron-bifurcating NADH-dependent reduced ferredoxin:NADP(+) oxidoreductase (NfnAB). The cytoplasmic iron-sulfur flavoprotein was heterologously produced in Escherichia coli, purified, and characterized. The purified enzyme was composed of 30-kDa (NfnA) and 50-kDa (NfnB) subunits in a 1-to-1 stoichiometry. NfnA harbors a [2Fe2S] cluster and flavin adenine dinucleotide (FAD), and NfnB harbors two [4Fe4S] clusters and FAD. M. thermoacetica contains a second electron-bifurcating enzyme. Cell extracts catalyzed the coupled reduction of NAD(+) and Fd with 2 H(2) molecules. The specific activity of this cytoplasmic enzyme was 3-fold higher in H(2)-CO(2)-grown cells than in glucose-grown cells. The function of this electron-bifurcating hydrogenase is not yet clear, since H(2)-CO(2)-grown cells additionally contain high specific activities of an NADP(+)-dependent hydrogenase that catalyzes the reduction of NADP(+) with H(2). This activity is hardly detectable in glucose-grown cells.  相似文献   

13.
The pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis is an extrinsic protein bound to the hydrogenosomal membrane. It has been solubilized and purified to homogeneity, principally by salting-out chromatography on Sepharose 4B. Low recoveries of active enzyme were caused by inactivation by O2 and the irreversible loss of thiamin pyrophosphate. It is a dimeric enzyme of overall Mr 240,000 and subunit Mr 120,000. The enzyme contains, per mol of dimer, 7.3 +/- 0.3 mol of iron and 5.9 +/- 0.9 mol of acid-labile sulphur, suggesting the presence of two [4Fe-4S] centres, and 0.47 mol of thiamin pyrophosphate. The absorption spectrum of the enzyme is characteristic of a non-haem iron protein. The pyruvate: ferredoxin oxidoreductase from T. vaginalis is therefore broadly similar to the 2-oxo acid: ferredoxin (flavodoxin) oxidoreductases purified from bacterial sources, except that it is membrane-bound.  相似文献   

14.
Whole-cell and cell-extract experiments were performed to study the mechanism of oxalate metabolism in the acetogenic bacterium Moorella thermoacetica. In short-term, whole-cell assays, oxalate consumption was low unless cell suspensions were supplemented with CO(2), KNO(3), or Na(2)S(2)O(3). Cell extracts catalyzed the oxalate-dependent reduction of benzyl viologen. Oxalate consumption occurred concomitant to benzyl viologen reduction; when benzyl viologen was omitted, oxalate was not appreciably consumed. Based on benzyl viologen reduction, specific activities of extracts averaged 0.6 micromol oxalate oxidized min(-1) mg protein(-1). Extracts also catalyzed the formate-dependent reduction of NADP(+); however, oxalate-dependent reduction of NADP(+) was negligible. Oxalate- or formate-dependent reduction of NAD(+) was not observed. Addition of coenzyme A (CoA), acetyl-CoA, or succinyl-CoA to the assay had a minimal effect on the oxalate-dependent reduction of benzyl viologen. These results suggest that oxalate metabolism by M. thermoacetica requires a utilizable electron acceptor and that CoA-level intermediates are not involved.  相似文献   

15.
Heterocyst preparations have been obtained which actively perform nitrogen fixation (C2H2 reduction) and contain the enzymes of glycolysis and some of the tricarboxylic acid cycle. Pyruvate: ferredoxin oxidoreductase has been unambiguously demonstrated in extracts from heterocysts by the formation of acetylcoenzyme A, CO2 and reduced methyl viologen (ferredoxin) from pyruvate, coenzyme A and oxidized methyl viologen (ferredoxin) as well as by the synthesis of pyruvate from CO2, acetylcoenzyme A and reduced methyl viologen. Pyruvate supports C2H2 reduction by isolated heterocysts, however, with lower activity than Na2S2O4 and H2. alpha-Ketoglutarate: ferredoxin oxidoreductase is absent in Anabaena cylindrica, confirming that the organism has an incomplete tricarboxylic acid cycle.  相似文献   

16.
Reduced ferredoxin:CO2 oxidoreductase (CO2 reductase) from Clostridium pasteurianum catalyzes the reduction of 'CO2' to formate with reduced ferredoxin, an isotopic exchange between 'CO2' and formate in the absence of ferredoxin, and the oxidation of formate to 'CO2' with oxidized ferredoxin. The active species of 'CO2', i.e. CO2 or HCO3 (H2CO3), utilized by the enzyme was determined. The method employed for the species identification was that of Copper et al. (1968). Both 'CO2' reduction to formate and the exchange reaction were studied. Data were obtained which are compatible with those expected if CO2 is the active species. The V and the dissociation constant Ks of the enzyme - CO2 complex in dependence of pH were determined from initial velocity studies of the exchange reaction. V was found to be only slightly affected by pH between 5.5 and 7.5. Ks was markedly dependent on pH; the constant increased with decreasing pH from 0.2 mM at pH 7.5 to 3 mM at pH 5.5.  相似文献   

17.
CO oxidoreductase was purified to 95% homogeneity from crude mycelial extracts of Streptomyces G26. The purified preparation has a specific activity of 25.7 units/mg, a 13-fold improvement on crude soluble mycelial extracts. The native enzyme (Mr 282,000) is composed of non-identical subunits of Mr 110,000 and 33,000. It is a molybdenum hydroxylase containing 1.6 mol of FAD, 7.3 mol of Fe, 8.3 mol of acid-labile sulphide and 1.3 mol of Mo per mol of enzyme. Purified CO oxidoreductase catalyses the reduction of benzyl viologen, confirming the previously reported ability of this enzyme to interact with low-potential acceptors. Cytochrome c reduction cannot be accounted for entirely by non-enzymic reduction by superoxide radicals. NAD+ and NADP+ are not reduced, nor is clostridial ferredoxin.  相似文献   

18.
Indolepyruvate ferredoxin oxidoreductase (IOR) catalyzes the oxidative decarboxylation of arylpyruvates. Gene cloning and sequencing analysis of the IOR gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was performed. Two genes, iorA and iorB, encoding α and β subunits of IOR were found to be tandemly arranged, which suggests that gene expression is translationaly coupled. Sequence analysis showed the C-terminal region of the α subunit to have a typical ferredoxin-type [4Fe-4S] cluster motif (CXXCXXCXXCXXXCP), which is similar to that present in the δ subunits of other oxidoreductases such as pyruvate ferredoxin oxidoreductase (POR) and 2-ketoisovalerate ferredoxin oxidoreductase (VOR). We suggest that the α subunit of KOD1-IOR has a mosaic structure composed of features characteristic of the α, β and δ subunits from POR and VOR. KOD1-IOR was overproduced in anaerobically incubated Escherichia coli cells and the crude enzyme was extracted under anaerobic conditions. The optimal temperature for activity of recombinant IOR was 70°?C and the half-life of this enzyme in the presence of air was 15 min at 25°?C.  相似文献   

19.
Reduced ferredoxin: CO2 oxidoreductase (CO2-reductase) from Clostridium pasteurianum catalyzes the reduction of CO2 to formate at the expense of reduced ferredoxin, an isotopic exchange between CO2 and formate in the absence of ferredoxin, and the oxidation of formate to CO2 with oxidized ferredoxin. The three activities were found to be equally affected by monovalent anions known to be ligands to transition metals: The enzyme was reversibly inhibited by azide (Ki = 0.004mM), cyanate (Ki = 0.3 mM), thiocyanate (Ki = 1mM), nitrite (Ki = 0.4mM), nitrate (Ki = 6mM), chlorate (Ki = 3mM), fluoride (Ki = 5mM), and by chloride, bromide, iodide (Ki greater than 5mM). There was no observable effect of pH on the inhibition constants. The enzyme was not inhibited by carbon monoxide. The enzyme was irreversibly inactivated by low concentrations (10muM) of cyanide. The rate of inactivation increased with increasing pH with an inflection point near pH 9.5. Reduced ferredoxin and formate rather than oxidized ferredoxin or CO2 protected the enzyme from inactivation by cyanide. The enzyme was protected by azide and cyanate from inactivation. In the presence of high concentrations of the monovalent anions the rate of inactivation by heat (55 degrees C), by molecular oxygen, and by cyanide was decreased by a factor of more than 100. Half maximal protection was observed at the Ki concentrations of the two reversible inhibitors. The data are interpreted to indicate that a transition metal of weak "a class" character and a disulfide are catalytically significant groups of CO2-reductase from C. pasteurianum.  相似文献   

20.
Synthesis of acetate from carbon dioxide and molecular hydrogen is considered to be the first carbon assimilation pathway on earth. It combines carbon dioxide fixation into acetyl-CoA with the production of ATP via an energized cell membrane. How the pathway is coupled with the net synthesis of ATP has been an enigma. The anaerobic, acetogenic bacterium Acetobacterium woodii uses an ancient version of this pathway without cytochromes and quinones. It generates a sodium ion potential across the cell membrane by the sodium-motive ferredoxin:NAD oxidoreductase (Rnf). The genome sequence of A. woodii solves the enigma: it uncovers Rnf as the only ion-motive enzyme coupled to the pathway and unravels a metabolism designed to produce reduced ferredoxin and overcome energetic barriers by virtue of electron-bifurcating, soluble enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号