首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PINCH-1 is a widely expressed focal adhesion protein that forms a ternary complex with integrin-linked kinase (ILK) and CH-ILKBP/actopaxin/alpha-parvin (abbreviated as alpha-parvin herein). We have used RNA interference, a powerful approach of reverse genetics, to investigate the functions of PINCH-1 and ILK in human cells. We report here the following. First, PINCH-1 and ILK, but not alpha-parvin, are essential for prompt cell spreading and motility. Second, PINCH-1 and ILK, like alpha-parvin, are crucial for cell survival. Third, PINCH-1 and ILK are required for optimal activating phosphorylation of PKB/Akt, an important signaling intermediate of the survival pathway. Whereas depletion of ILK reduced Ser473 phosphorylation but not Thr308 phosphorylation of PKB/Akt, depletion of PINCH-1 reduced both the Ser473 and Thr308 phosphorylation of PKB/Akt. Fourth, PINCH-1 and ILK function in the survival pathway not only upstream but also downstream (or in parallel) of protein kinase B (PKB)/Akt. Fifth, PINCH-1, ILK and to a less extent alpha-parvin are mutually dependent in maintenance of their protein, but not mRNA, levels. The coordinated down-regulation of PINCH-1, ILK, and alpha-parvin proteins is mediated at least in part by proteasomes. Finally, increased expression of PINCH-2, an ILK-binding protein that is structurally related to PINCH-1, prevented the down-regulation of ILK and alpha-parvin induced by the loss of PINCH-1 but failed to restore the survival signaling or cell shape modulation. These results provide new insights into the functions of PINCH proteins in regulation of ILK and alpha-parvin and control of cell behavior.  相似文献   

3.
IMP-3, a member of the insulin-like growth factor-II (IGF-II) mRNA-binding protein (IMP) family, is expressed mainly during embryonic development and in some tumors. Thus, IMP-3 is considered to be an oncofetal protein. The functional significance of IMP-3 is not clear. To identify the functions of IMP-3 in target gene expression and cell proliferation, RNA interference was employed to knock down IMP-3 expression. Using human K562 leukemia cells as a model, we show that IMP-3 protein associates with IGF-II leader-3 and leader-4 mRNAs and H19 RNA but not c-myc and beta-actin mRNAs in vivo by messenger ribonucleoprotein immunoprecipitation analyses. IMP-3 knock down significantly decreased levels of intracellular and secreted IGF-II without affecting IGF-II leader-3, leader-4, c-myc, or beta-actin mRNA levels and H19 RNA levels compared with the negative control siRNA treatment. Moreover, IMP-3 knock down specifically suppressed translation of chimeric IGF-II leader-3/luciferase mRNA without altering reporter mRNA levels. Together, these results suggest that IMP-3 knock down reduced IGF-II expression by inhibiting translation of IGF-II mRNA. IMP-3 knock down also markedly inhibited cell proliferation. The addition of recombinant human IGF-II peptide to these cells restored cell proliferation rates to normal. IMP-3 and IMP-1, two members of the IMP family with significant structural similarity, appear to have some distinct RNA targets and functions in K562 cells. Thus, we have identified IMP-3 as a translational activator of IGF-II leader-3 mRNA. IMP-3 plays a critical role in regulation of cell proliferation via an IGF-II-dependent pathway in K562 leukemia cells.  相似文献   

4.
5.
Integrin-linked kinase (ILK) is a multidomain protein that plays important roles at cell-extracellular matrix (ECM) adhesion sites. We describe here a new LIM-domain containing protein (termed as PINCH-2) that forms a complex with ILK. PINCH-2 is co-expressed with PINCH-1 (previously known as PINCH), another member of the PINCH protein family, in a variety of human cells. Immunofluorescent staining of cells with PINCH-2-specific antibodies show that PINCH-2 localizes to both cell-ECM contact sites and the nucleus. Deletion of the first LIM (LIM1) domain of PINCH-2 abolished the ability of PINCH-2 to form a complex with ILK. The ILK-binding defective LIM1-deletion mutant, unlike the wild type PINCH-2 or the ILK-binding competent LIM5-deletion mutant, was incapable of localizing to cell-ECM contact sites, suggesting that ILK binding is required for this process. Importantly, the PINCH-2-ILK and PINCH-1-ILK interactions are mutually exclusive. Overexpression of PINCH-2 significantly inhibited the PINCH-1-ILK interaction and reduced cell spreading and migration. These results identify a novel nuclear and focal adhesion protein that associates with ILK and reveals an important role of PINCH-2 in the regulation of the PINCH-1-ILK interaction, cell shape change, and migration.  相似文献   

6.
RNA localization is a regulated component of gene expression of fundamental importance in development and differentiation. Several RNA binding proteins involved in RNA localization during development in Drosophila have been identified, of which Y14, Mago, Pumilio, and IMP-1 are known to be expressed in adult mammalian intestine. The present study was undertaken to define the developmental and regional expression of these proteins, as well as Staufen-1, in mouse intestinal cells and in other tissues and cell lines using RT-PCR, and localization using in situ hybridization and immunohistochemistry. Staufen-1, Y14, Mago-m, and Pumilio-1 were expressed in intestinal epithelial cells of both villus and crypt and in Caco-2 and IEC-6 cells. In contrast, expression of IMP-1 was age- and region-specific, showing clear expression in distal fetal and newborn intestine, but very low or no expression in adult. The mRNAs were cytosolic, with more apical than basal expression in enterocytes. Staufen protein showed a similar localization pattern to that of its cognate mRNA. Overall, the data suggest an essential role for these proteins in intestinal cells. Age and regional expression of IMP-1 may indicate a role in regulation of site-specific translation of intestinal genes or in RNA localization.  相似文献   

7.
8.
9.
Abstract

The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.  相似文献   

10.
The giant myofibrillar protein titin contains within its C-terminal region a serine-threonine kinase of unknown function. We have identified a novel muscle specific RING finger protein, referred to as MURF-1, that binds in vitro to the titin repeats A168/A169 adjacent to the titin kinase domain. In myofibrils, MURF-1 is present within the periphery of the M-line lattice in close proximity to titin's catalytic kinase domain, within the Z-line lattice, and also in soluble form within the cytoplasm. Yeast two-hybrid screens with MURF-1 as a bait identified two other highly homologous MURF proteins, MURF-2 and MURF-3. MURF-1,2,3 proteins are encoded by distinct genes, share highly conserved N-terminal RING domains and in vitro form dimers/heterodimers by shared coiled-coil motifs. Of the MURF family, only MURF-1 interacts with titin repeats A168/A169, whereas MURF-3 has been reported to affect microtubule stability. Association of MURF-1 with M-line titin may potentially modulate titin's kinase activity similar to other known kinase-associated proteins, whereas differential expression and heterodimerization of MURF1, 2 and 3 may link together titin kinase and microtubule-dependent signal pathways in striated muscles.  相似文献   

11.
Cells attach to the extracellular matrix (ECM) through integrins to form focal adhesion complexes, and this process is followed by the extension of lamellipodia to enable cell spreading. PINCH-1, an adaptor protein essential for the regulation of cell-ECM adhesion, consists of five tandem LIM domains and a small C-terminal region. PINCH-1 is known to interact with integrin-linked kinase (ILK) and Ras suppressor protein 1 (Rsu-1); however, the precise mechanism by which this complex regulates cell-ECM adhesion is not fully understood. We report here that the LIM1 domain of PINCH-1, which associates with ILK to stabilize the expression of this protein, is sufficient for cell attachment but not for cell spreading. In contrast, the C-terminal region of PINCH-1, which binds to Rsu-1, plays a pivotal role in cell spreading but not in cell attachment. We also show that PINCH-1 associates with Rsu-1 to activate Rac1 and that Rac1 activation is necessary for cell spreading. Thus, these data reveal how specific domains of PINCH-1 direct two independent pathways: one utilizing ILK to allow cell attachment, and the other recruiting Rsu-1 to activate Rac1 in order to promote cell spreading.  相似文献   

12.
13.
Microtubules define the architecture and internal organization of cells by positioning organelles and activities, as well as by supporting cell shape and mechanics. One of the major functions of microtubules is the control of polarized cell motility. In order to support the asymmetry of polarized cells, microtubules have to be organized asymmetrically themselves. Asymmetry in microtubule distribution and stability is regulated by multiple molecular factors, most of which are microtubule-associated proteins that locally control microtubule nucleation and dynamics. At the same time, the dynamic state of microtubules is key to the regulatory mechanisms by which microtubules regulate cell polarity, modulate cell adhesion and control force-production by the actin cytoskeleton. Here, we propose that even small alterations in microtubule dynamics can influence cell migration via several different microtubule-dependent pathways. We discuss regulatory factors, potential feedback mechanisms due to functional microtubule-actin crosstalk and implications for cancer cell motility.  相似文献   

14.
Abstract We identified a novel neural cell adhesion molecule (NCAM)-associated protein, myo genesis-related and N CAM- a ssociated p rotein (MYONAP), the expression of which increases during the formation of myotubes in quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells). MYONAP shares homology with PL48 in human cytotrophoblasts and KIAA0386 in human brain. Excess expression of MYONAP in presumptive QM-RSV myoblasts induced long protrusions like neurites in cooperation with microtubules. Suppression of MYONAP by antisense cDNA prevented myotubes from forming in spite of the expression of myogenin, creatine kinase, and myosin, and rendered myoblast membranes resistant to fusion. Yeast two-hybrid screening showed that MYONAP interacted with NCAM specifically. Deletion of the NCAM-associated domain resulted in a loss of the function that induces neurite-like protrusions to form and disturbed the elongation of microtubules. The results suggested that MYONAP influenced the functions of microtubules and was involved in the formation of myotubes via its interaction with NCAM.  相似文献   

15.
16.
17.
The biochemical properties of muscle extracellular matrix are essential for stem cell adhesion, motility, proliferation and myogenic development. Recombinant elastin-like polypeptides are synthetic polypeptides that, besides maintaining some properties of the native protein, can be tailored by fusing bioactive sequences to their C-terminal. Our laboratory synthesized several Human Elastin-Like Polypeptides (HELP) derived from the sequence of human tropoelastin. Here, we developed a novel HELP family member by fusing the elastin-like backbone to the sequence of human Epidermal Growth Factor. We employed this synthetic protein, named HEGF, either alone or in combination with other proteins of the HELP family carrying RGD-integrin binding sites, as adhesion substrate for C2C12 myoblasts and satellite cells primary cultures. Adhesion of myoblasts to HEGF-based substrates induced scattering, decreased adhesion and cytoskeleton assembly; the concomitant presence of the RGD motifs potentiated all these effects. Recombinant substrates induced myoblasts proliferation, differentiation and the development of multinucleated myotubes, thus favoring myoblasts expansion and preserving their myogenic potential. The effects induced by adhesion substrates were inhibited by AG82 (Tyrphostin 25) and herbimycin A, indicating their dependence on the activation of both the EGF receptor and the tyrosine kinase c-src. Finally, HEGF increased the number of muscle stem cells (satellite cells) derived from isolated muscle fibers in culture, thus highlighting its potential as a novel substrate for skeletal muscle regeneration strategies.  相似文献   

18.
19.
Structure and Functions of Classical Cadherins   总被引:6,自引:0,他引:6  
Cadherins are a family of membrane receptors that mediate calcium-dependent homophilic cell–cell adhesion. Cadherins play a key role in the regulation of organ and tissue development during embryogenesis. In adult organisms, these proteins are responsible for formation of stable cell–cell junctions and maintenance of normal tissue structure. Disruption in expression or function of cadherins may cause uncontrolled cell migration and proliferation during tumor development. This review focuses on the structure and physiological functions of classical cadherins.  相似文献   

20.
How cells couple and uncouple regulation of cellular processes such as shape change and survival is an important question in molecular cell biology. PINCH-1, a widely expressed protein consisting of five LIM domains and a C-terminal tail, is an essential focal adhesion protein with multiple functions including regulation of the integrin-linked kinase (ILK) level, cell shape, and survival signaling. We show here that the LIM1-mediated interaction with ILK regulates all these three processes. By contrast, the LIM4-mediated interaction with Nck-2, which regulates cell morphology and migration, is not required for the control of the ILK level and survival. Remarkably, a short 15-residue tail C-terminal to LIM5 is required for both cell shape modulation and survival, albeit it is not required for the control of the ILK level. The C-terminal tail not only regulates PINCH-1 localization to focal adhesions but also functions after it localizes there. These findings suggest that PINCH-1 functions as a molecular platform for coupling and uncoupling diverse cellular processes via overlapping but yet distinct domain interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号