首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Further sequencing of a cDNA encoding the C-terminal region of a rat intestinal mucin peptide reveals a region corresponding to 258 amino acids enriched in serine, threonine and proline, but no typical mucin-like tandem repeat structures. Between this region and a previously described stretch of 4.5 degenerate S,T,P-rich tandem repeats, there is a 42 amino acid cysteine-rich segment. The discontinuity of cysteine-rich and S,T,P-rich areas near the C-terminus has not been observed in other mammalian mucin structures reported to date.  相似文献   

2.
There are many more glycoproteins in Helicoverpa armigera peritrophic membrane than midgut separated by SDS-PAGE analysis after Periodic acid-Schiff (PAS) and coomassie staining. The peritrophic membrane (PM) of H. armigera larvae contains about forty associated proteins. A cDNA library was constructed from H. armigera midgut mRNA to study the new target for pest biocontrol. An antiserum against Spodoptera exigua integral/total PM proteins cross reacted with several H. armigera PM proteins and was used to isolate a complete cDNA encoding an insect intestinal mucin (HaIIM86). The deduced protein sequence of the cDNA contained one potentially glycosylated, mucin-like domain, five cysteine-rich chitin-binding domains (CBDs) and two D-G rich regions. Mucin domain was lined between the first and second CBDs; the two additional D-G rich regions were proposed to internal reside at the amino terminus of the protein flanked by three cysteine-rich CBDs. HaIIM86 contains two D-G-rich tandem repeat domains flanked by cysteine-rich sequences in peritrophic membrane proteins which is not present in all the currently known PM proteins. Howerer the functions of D-G rich domains require further investigation. HaIIM86 was shown as 200 kDa protein by SDS-PAGE analysis and appeared to be associated with the PM. HaIIM86 has chitin-binding activity and can be degraded into 90 and 70 kDa by HaGV Enhancin in vivo. The finding has shown that HaIIM86 is the target substrate for enhancin and the potential target for pest control.  相似文献   

3.
In order to sequence the cysteine-rich regions of pig gastric mucin (PGM), we used our previously identified pig gastric mucin clone PGM-2A to screen a pig stomach cDNA library and perform rapid amplification of cDNA ends to obtain two cysteine-rich clones, PGM-2X and PGM-Z13. PGM-2X has 1071 base pairs (bp) encoding 357 amino acids containing five serine-threonine-rich 16 amino acid tandem repeats, downstream from a cysteine-rich region similar to human and mouse MUC5AC. PGM-Z13 encodes the complete 3'-terminus of PGM and is composed of 3336 bp with a 2964 bp open reading frame encoding 988 amino acids with four serine-threonine-rich tandem repeats upstream from a cysteine-rich region similar to the carboxyl terminal regions of human and rat MUC5AC and human MUC5B. This region is homologous to von Willebrand factor C and D domains involved in acid induced polymerization, and to the carboxyl terminal cystine-knot domain of various mucins, TGF-beta, vWF and norrin, which is involved in dimerization. These newly sequenced cysteine-rich regions of pig gastric mucin may be critical for its gelation and for its observed increased viscosity induced by low pH.  相似文献   

4.
Brassica self-incompatibility, a highly discriminating outbreeding mechanism, has become a paradigm for the study of plant cell-cell communications. When self-pollen lands on a stigma, the male ligand S cysteine-rich (SCR), which is present in the pollen coat, is transmitted to the female receptor, S-locus receptor kinase (SRK). SRK is a membrane-spanning serine/threonine receptor kinase present in the stigmatic papillar cell membrane. Haplotype-specific binding of SCR to SRK brings about pollen rejection. The extracellular receptor domain of SRK (eSRK) is responsible for binding SCR. Based on sequence homology, eSRK can be divided into three subdomains: B lectin-like, hypervariable, and PAN. Biochemical analysis of these subdomains showed that the hypervariable subdomain is responsible for most of the SCR binding capacity of eSRK, whereas the B lectin-like and PAN domains have little, if any, affinity for SCR. Fine mapping of the SCR binding region of SRK using a peptide array revealed a region of the hypervariable subdomain that plays a key role in binding the SCR molecule. We show that residues within the hypervariable subdomain define SRK binding and are likely to be involved in defining haplotype specificity.  相似文献   

5.
Mammalian genes subject to genomic imprinting often form clusters and are regulated by long-range mechanisms. The distal imprinted domain of mouse chromosome 7 is orthologous to the Beckwith-Wiedemann syndrome domain in human chromosome 11p15.5 and contains at least 13 imprinted genes. This domain consists of two subdomains, which are respectively regulated by an imprinting center. We here report the finished-quality sequence of a 0.6-Mb region encompassing the more centromeric subdomain. The sequence contains four imprinted genes (Ascl2/Mash2, Ins2, Igf2 and H19) and reveals previously unidentified CpG islands and tandem repeats, which may be features of imprinted genes. Most interestingly, a unique 210-kb segment consisting almost exclusively of tandem repeats and retroelements is identified. This segment, located between Th and Ins2, has features of heterochromatin-forming DNA and is highly methylated at CpG sites. The segment exhibits asynchronous replication on the parental chromosomes, a feature of the imprinted domains. We propose that this repeat segment could serve either as a boundary between the two subdomains or as a target for epigenetic chromatin modifications that regulate imprinting.  相似文献   

6.
When subjected to thiol reduction, purified intestinal mucins have been shown to undergo a decrease in molecular mass and to liberate a 118-kDa glycopeptide (Roberton, A. M., Mantle, M., Fahim, R. E. F., Specian, R., Bennick, A., Kawagishi, S., Sherman, P., and Forstner, J. F. (1989) Biochem. J. 261, 637-647). The latter has been called a putative "link" component because it is assumed to be important for disulfide bond-mediated mucin polymerization. Controversy exists as to whether the putative link is an integral mucin component or a separate mucin-associated glycopeptide. In the present study both NH2-terminal and internal amino acid sequences of the 118-kDa glycopeptide of rat intestinal mucin were used to generate opposing oligonucleotide primers for polymerase chain reaction. A specific 1.2-kilobase (kb) product was obtained, from which a 0.5-kb HindIII fragment was used as a probe to screen a lambda ZAP II cDNA library of rat intestine. A 2.6-kb cDNA (designated MLP 2677) was sequenced and revealed an open reading frame of 2.5 kb encoding 837 amino acids. The deduced amino acid sequence showed that the putative link peptide is equivalent to the carboxyl-terminal 689 amino acids of a larger peptide. Northern blots revealed a mRNA size of approximately 9 kb. Computer searches revealed no sequence homology with other proteins, but similarities were seen in the alignment of cysteine residues in the link and in several domains of human von Willebrand factor, as well as cysteine-rich areas of bovine and porcine submaxillary mucins and a frog skin mucin designated FIM-B.1. In keeping with earlier demonstrations of the presence of mannose in the 118-kDa glycopeptide, there were several (13) consensus sequences for attachment of N-linked oligosaccharides within the link domain. Further sequencing of MLP 2677 in a direction 5' to the codon specifying the NH2-terminal proline of the link has revealed a coding region for 148 amino acids, including a unique 75-amino acid domain rich in cysteine and proline, and a region containing 4.5-variable tandem repeats (each 11-12 amino acids) rich in serine, threonine, and proline. The presence of mucin-like tandem repeats suggests that the entire cysteine-rich link peptide represents the carboxyl-terminal region (75.5 kDa) of a mucin-like peptide (MLP). The latter is estimated to have a molecular mass of approximately 300 kDa.  相似文献   

7.
Type IIS restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. The restriction endonuclease BpuJI recognizes the asymmetric sequence 5′-CCCGT; however, it cuts at multiple sites in the vicinity of the target sequence. BpuJI consists of two physically separate domains, with catalytic and dimerization functions in the C-terminal domain and DNA recognition functions in the N-terminal domain. Here we report the crystal structure of the BpuJI recognition domain bound to cognate DNA at 1.3-Å resolution. This region folds into two winged-helix subdomains, D1 and D2, interspaced by the DL subdomain. The D1 and D2 subdomains of BpuJI share structural similarity with the similar subdomains of the FokI DNA-binding domain; however, their orientations in protein-DNA complexes are different. Recognition of the 5′-CCCGT target sequence is achieved by BpuJI through the major groove contacts of amino acid residues located on both the helix-turn-helix motifs and the N-terminal arm. The role of these interactions in DNA recognition is also corroborated by mutational analysis.  相似文献   

8.
The genes for alpha-fetoprotein and albumin arose by duplication of an ancestral gene that contained three genetic domains. These domains were generated by the triplication of a primordial genetic domain composed of five exons or subdomains. That the primordial domain itself arose by amplification of a simpler sequence is suggested by nucleotide sequence homologies among the subdomains of the mouse alpha-fetoprotein gene. A detailed analysis of these homologies reveals that each of the five subdomain families contains remnants of a 27-base-long repeat from which the entire alpha-fetoprotein coding sequence has been assembled. A consensus sequence for the 27 nucleotide repeat is derived, and the positions of the repeats within each subdomain are described. A model is proposed for the evolution of the primordial domain by the amplification and divergence of the 27 base-pair sequence, along with the condensation of the repeats into subdomains separated by intervening sequences. It is postulated that the role of intervening sequences may be to limit sequence amplification in genes such as alpha-fetoprotein and albumin whose protein products cannot tolerate size variation.  相似文献   

9.
Human MUC4 mucin cDNA and its variants in pancreatic carcinoma   总被引:2,自引:0,他引:2  
The human MUC4 gene is not expressed in normal pancreas; however, its dysregulation results in high levels of expression in pancreatic tumors. To investigate the tumor-associated expression, MUC4 cDNA was cloned from a human pancreatic tumor cell line cDNA expression library using a polyclonal antibody raised against human deglycosylated mucin and RT-PCR. Pancreatic MUC4 cDNA shows differences in 12 amino acid residues in the non-tandem repeat coding region with no structural rearrangement as compared with tracheal MUC4. The full-length MUC4 cDNA includes a leader sequence, a serine and threonine rich non-tandem repeat region, a central large tandem repeat domain containing 48 bp repetitive units, regions rich in potential N-glycosylation sites, two cysteine-rich domains, EGF-like domains, and a transmembrane domain. We also report the presence of a new EGF-like domain in MUC4 cDNA, located in the cysteine-rich region upstream from the first EGF-like domain. Four distinct splice events were identified in the region downstream of the central tandem repeat domain that generate three new MUC4 cDNA sequences (sv4, sv9, and sv10). The deduced amino acid sequences of two of these variants lack the transmembrane domain. Furthermore, two unique forms of MUC4 (MUC4/Y and MUC4/X) generated as a result of alternative splicing lack the salient feature of mucins, the tandem repeat domain. A high degree of polymorphism in the central tandem repeat region of MUC4 was observed in various pancreatic adenocarcinoma cell lines, with allele sizes ranging from 23.5 to 10.0 kb. MUC4 mRNA expression was higher in differentiated cell lines, with no detectable expression in poorly differentiated pancreatic tumor cell lines.  相似文献   

10.
11.
A growing family of F-actin-bundling proteins harbors a modular F-actin-binding headpiece domain at the C terminus. Headpiece provides one of the two F-actin-binding sites essential for filament bundling. Here, we report the first structure of a functional headpiece domain. The NMR structure of chicken villin headpiece (HP67) reveals two subdomains that share a tightly packed hydrophobic core. The N-terminal subdomain contains bends, turns, and a four-residue alpha-helix as well as a buried histidine residue that imparts a pH-dependent folding. The C-terminal subdomain is composed of three alpha-helices and its folding is pH-independent. Two residues previously implicated in F-actin-binding form a buried salt-bridge between the N and C-terminal subdomains. The rest of the identified actin-binding residues are solvent-exposed and map onto a unique F-actin-binding surface.  相似文献   

12.
O-mannosyl glycans are important in muscle and brain development. Protein O-mannosyltransferase (POMT) catalyzes the initial step of O-mannosyl glycan biosynthesis. To understand which serine (Ser) and threonine (Thr) residues POMT recognizes for mannosylation, we prepared a series of synthetic peptides based on a mucin-like domain in alpha-dystroglycan (alpha-DG), one of the best known O-mannosylated proteins in mammals. In alpha-DG, the mucin-like domain spans amino acid residues 316 to 489. Two similar peptide sequences, corresponding to residues 401-420 and 336-355, respectively, were strongly mannosylated by POMT, whereas other peptides from alpha-DG and peptides of various mucin tandem repeat regions were poorly mannosylated. Peptides 401-420 and 336-355 contained four and six Ser and Thr residues, respectively. Substitution of Ala residues for the Ser or Thr residues showed that Thr-414 of peptide 401-420 and Thr-351 of peptide 336-355 were prominently modified by O-mannosylation. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and Edman degradation analysis of the mannosylated peptide 401-420 indicated that Thr-414 was the Thr residue that was most prominently modified by O-mannosylation and that O-mannosylation occurred sequentially rather than at random. Based on these results, we propose a preferred amino acid sequence for mammalian O-mannose modification.  相似文献   

13.
14.
The nitric-oxide synthases (NOSs) are comprised of an oxygenase domain and a reductase domain bisected by a calmodulin (CaM) binding region. The NOS reductase domains share approximately 60% sequence similarity with the cytochrome P450 oxidoreductase (CYPOR), which transfers electrons to microsomal cytochromes P450. The crystal structure of the neuronal NOS (nNOS) connecting/FAD binding subdomains reveals that the structure of the nNOS-connecting subdomain diverges from that of CYPOR, implying different alignments of the flavins in the two enzymes. We created a series of chimeric enzymes between nNOS and CYPOR in which the FMN binding and the connecting/FAD binding subdomains are swapped. A chimera consisting of the nNOS heme domain and FMN binding subdomain and the CYPOR FAD binding subdomain catalyzed significantly increased rates of cytochrome c reduction in the absence of CaM and of NO synthesis in its presence. Cytochrome c reduction by this chimera was inhibited by CaM. Other chimeras consisting of the nNOS heme domain, the CYPOR FMN binding subdomain, and the nNOS FAD binding subdomain with or without the tail region also catalyzed cytochrome c reduction, were not modulated by CaM, and could not transfer electrons into the heme domain. A chimera consisting of the heme domain of nNOS and the reductase domain of CYPOR reduced cytochrome c and ferricyanide at rates 2-fold higher than that of native CYPOR, suggesting that the presence of the heme domain affected electron transfer through the reductase domain. These data demonstrate that the FMN subdomain of CYPOR cannot effectively substitute for that of nNOS, whereas the FAD subdomains are interchangeable. The differences among these chimeras most likely result from alterations in the alignment of the flavins within each enzyme construct.  相似文献   

15.
16.
Myosin XI are actin-based molecular motors that are thought to drive organelle movements in plants, analogous to myosin V in animals and fungi. Similar domain structure of these myosins suggests that binding to organelles may occur via the globular tail domain in both types of motors, even though sequence similarity is low. To address this hypothesis, we developed a structure homology model for the globular tail of MYA1, a myosin XI from Arabidopsis, based on the known structure of yeast myosin V (Myo2p) globular tail. This model suggested an interaction between two subdomains of the globular tail which was verified by yeast two-hybrid assay and by in vivo bimolecular fluorescence complementation (BiFC). Interface mapping demonstrated that this subdomain interaction depends critically on the C terminus of helix H6 as well as three specific residues in helices H3 and H15, consistent with the structural prediction. The reconstituted globular tails of several Arabidopsis myosin XIs in BiFC assays targeted to peroxisomes in plant cells, identifying this domain as sufficient for cargo binding. Unlike myosin V, either subdomain of myosin XI alone was targeting-competent and responsible for association with different organelles. In addition, our data suggest that organelle binding is regulated by an allosteric interaction between two tail subdomains. We conclude that the globular tail of myosin XI shares a similar structure with that of myosin V, but has evolved plant-specific cargo binding mechanisms.  相似文献   

17.
To reveal insight into the initiation of mammalian O-mannosylation in vivo, recombinant glycosylation probes containing sections of human alpha-dystroglycan (hDG) were expressed in epithelial cell lines. We demonstrate that O-mannosylation within the mucin domain of hDG occurs preferentially at Thr/Ser residues that are flanked by basic amino acids. Protein O-mannosylation is independent of a consensus sequence, but strictly dependent on a peptide region located upstream of the mucin domain. This peptide region cannot be replaced by other N-terminal peptides, however, it is not sufficient to induce O-mannosylation on a structurally distinct mucin domain in hybrid constructs. The presented in vivo evidence for a more complex regulation of mammalian O-mannosylation contrasts with a recent in vitro study of O-mannosylation in human alpha-dystroglycan peptides indicating the existence of an 18-meric consensus sequence. We demonstrate in vivo that the entire region p377-417 is necessary and sufficient for O-mannosylation initiation of hDG, but not of MUC1 tandem repeats. The feature of a doubly controlled initiation process distinguishes mammalian O-mannosylation from other types of O-glycosylation, which are largely controlled by structural properties of the substrate positions and their local peptide environment.  相似文献   

18.
The sequence of a 3.65-kilobase cDNA encoding a large portion of the polypeptide chain of porcine submaxillary mucin (apomucin) has been completed. The encoded polypeptide contains 1150 residues with the carboxyl-terminal 240 residues forming a globular domain that is rich in half-cystine, but deficient in sites for oligosaccharide attachment. The remaining 910 residues preceding the half-cystine-rich domain appear devoid of secondary structures, but they are rich in serine and threonine to which the O-linked oligosaccharides are bound. The first 391 residues of apomucin contain several tandemly repeated, identical sequences of 81 residues. Blots of genomic DNA partially digested with restriction nucleases show that at least 25 of these identical repeats are present in apomucin. The amino acid composition of apomucin isolated in the absence of protease inhibitors was shown earlier (Eckhardt, A. E., Timpte, C. S., Abernethy, J. L., Toumadje, A., Johnson, W. C., Jr., and Hill, R. L. (1987) J. Biol. Chem. 282, 11339-11344) to be devoid of half-cystine. In contrast, the amino acid composition of mucin purified in the presence of protease inhibitors contains half-cystine in amounts predicted by the cDNA sequence and also suggests that this mucin has about 25 tandem repeats. Thus, apomucin contains at least 2800 amino acid residues. Moreover, immunoblots of apomucin prepared in the presence or the absence of protease inhibitors, with antibodies specific for the half-cystine-rich domains or the tandem repeat sequences, show that the half-cystine-rich domain is absent in apomucin unless protease inhibitors are present throughout. Both types of mucin, however, contain the highly repetitive sequences. The molecular weight of undegraded apomucin has not been established exactly, but gel filtration in 6 M guanidine hydrochloride suggests that it is considerably higher than 250,000. RNA blot analysis shows that apomucin mRNA is large and polydisperse in accord with the message size necessary to synthesize the large apomucin polypeptide. These structural features of apomucin suggest a model for the structure of the mucin molecule that correlates well with its reported properties.  相似文献   

19.
The spike glycoprotein (S) of recently identified Middle East respiratory syndrome coronavirus (MERS-CoV) targets the cellular receptor, dipeptidyl peptidase 4 (DPP4). Sequence comparison and modeling analysis have revealed a putative receptor-binding domain (RBD) on the viral spike, which mediates this interaction. We report the 3.0 Å-resolution crystal structure of MERS-CoV RBD bound to the extracellular domain of human DPP4. Our results show that MERS-CoV RBD consists of a core and a receptor-binding subdomain. The receptor-binding subdomain interacts with DPP4 β-propeller but not its intrinsic hydrolase domain. MERS-CoV RBD and related SARS-CoV RBD share a high degree of structural similarity in their core subdomains, but are notably divergent in the receptor-binding subdomain. Mutagenesis studies have identified several key residues in the receptor-binding subdomain that are critical for viral binding to DPP4 and entry into the target cell. The atomic details at the interface between MERS-CoV RBD and DPP4 provide structural understanding of the virus and receptor interaction, which can guide development of therapeutics and vaccines against MERS-CoV infection.  相似文献   

20.
The proline-rich tandem repeat domain of human mucin MUC1 forms an extended structure containing large repeating loops that are crested by a turn. We show that the repeating-loop structure of MUC1 can be replaced by an antibody complementarity-determining region loop of a human immunodeficiency virus type 1 (HIV-1)-specific neutralizing antibody to create a chimeric, multivalent, mucin-like, anti-HIV-1 compound. We used 8 residues of an antibody molecule to replace 8 of 20 residues of the MUC1 tandem-repeat sequence. The antiviral peptide discussed here contains three copies of a 20-residue tandem repeat, (IYYDYEEDPAPGSTAPPAHG)3, for a total of 60 residues. We demonstrate that the mucin-antibody chimera retains the binding specificity of the parent antibody (monoclonal antibody F58), GPGR of the HIV-1 gp120 V3 neutralizing epitope, and the ability to neutralize virus particles. In inhibition enzyme-linked immunosorbent assay, the mucin-antibody chimeric peptide could inhibit 71 to 84% of binding to a V3 loop peptide by monoclonal antibodies known to be specific for GPGR in the V3 loop. The mucin-antibody chimeric peptide could also inhibit monoclonal antibody binding to native gp120 captured from virus particles. In addition, the chimeric peptide neutralized the homologous HIV-IIIB virus in a standard neutralization assay. The methods of antiviral peptide design and construction presented here are general and theoretically limited only by the size of the antibody repertoire. This approach could be used to synthesize peptides for a variety of therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号