首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
3.
The axon initial segment (AIS) plays a central role in electrogenesis and in the maintenance of neuronal polarity. Its molecular organization is dependent on the scaffolding protein ankyrin (Ank) G and is regulated by kinases. For example, the phosphorylation of voltage‐gated sodium channels by the protein kinase CK2 regulates their interaction with AnkG and, consequently, their accumulation at the AIS. We previously showed that IQ motif containing J‐Schwannomin‐Interacting Protein 1 (IQCJ‐SCHIP‐1), an isoform of the SCHIP‐1, accumulated at the AIS in vivo. Here, we analyzed the molecular mechanisms involved in IQCJ‐SCHIP‐1‐specific axonal location. We showed that IQCJ‐SCHIP‐1 accumulation in the AIS of cultured hippocampal neurons depended on AnkG expression. Pull‐down assays and surface plasmon resonance analysis demonstrated that AnkG binds to CK2‐phosphorylated IQCJ‐SCHIP‐1 but not to the non‐phosphorylated protein. Surface plasmon resonance approaches using IQCJ‐SCHIP‐1, SCHIP‐1a, another SCHIP‐1 isoform, and their C‐terminus tail mutants revealed that a segment including multiple CK2‐phosphorylatable sites was directly involved in the interaction with AnkG. Pharmacological inhibition of CK2 diminished both IQCJ‐SCHIP‐1 and AnkG accumulation in the AIS. Silencing SCHIP‐1 expression reduced AnkG cluster at the AIS. Finally, over‐expression of IQCJ‐SCHIP‐1 decreased AnkG concentration at the AIS, whereas a mutant deleted of the CK2‐regulated AnkG interaction site did not. Our study reveals that CK2‐regulated IQJC‐SCHIP‐1 association with AnkG contributes to AIS maintenance.

  相似文献   


4.
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal‐specific kinase cyclin‐dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5‐dependent phosphorylation of the dynein regulator Ndel1 is required for proper re‐routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis‐sorting defects. While inhibition of the CDK5‐Ndel1‐Lis1‐dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein‐dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.   相似文献   

5.
In epithelial cells, the various components of the membrane skeleton are segregated within specialized subregions of the plasma membrane, thus contributing to the development and stabilization of cell surface polarity. It has previously been shown that, in various Drosophila epithelia, the membrane skeleton components ankyrin and alphabeta-spectrin reside at the lateral surface, whereas alphabeta(H)-spectrin is restricted to the apical domain. By use of confocal immunofluorescence microscopy, the present study characterizes the membrane skeleton of epithelial cells in the posterior midgut, leading to a number of unexpected results. First, ankyrin and alphabeta-spectrin are not detected on the entire lateral surface but appear to be restricted to the apicolateral area, codistributing with fasciclin III at smooth septate junctions. The presumptive ankyrin-binding proteins neuroglian and Na(+),K(+)-ATPase, however, do not colocalize with ankyrin. Second, alphabeta(H)-spectrin is enriched at the apical domain but is also present in lower amounts on the entire lateral surface, colocalizing apicolaterally with ankyrin/alphabeta-spectrin. Finally, despite the absence of zonulae adherentes, F-actin, beta(H)-spectrin, and nonmuscle myosin-II are enriched in the midlateral region. Thus, the model established for the organization of the membrane skeleton in Drosophila epithelia does not hold for the posterior midgut, and there is quite some variability between the different epithelia with respect to the organization of the membrane skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号