首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laska M 《Chemical senses》2005,30(9):755-760
The ability of human subjects to distinguish between aliphatic C6 alcohols differing in presence, position, or configuration (i.e., cis-trans geometry) of a double bond was tested. In a forced-choice triangular test procedure, 20 subjects were repeatedly presented with all 21 binary combinations of the seven stimuli and asked to identify the bottle containing the odd stimulus. I found (a) that as a group, the subjects performed significantly above chance level in all tasks but two and thus were clearly able to discriminate between most of the odor pairs presented; (b) marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly distinguish between all 21 odor pairs to subjects who failed to do so with 10 of the tasks; (c) that odor pairs involving two hexenols were significantly more difficult to discriminate than odor pairs that involved hexanol and one of the hexenols; (d) that odor pairs involving hexenols sharing the same geometry but differing in the position of the double bond by only one carbon atom were significantly more difficult to distinguish than odor pairs that involved hexenols differing by two carbon atoms; (e) that odor pairs involving 4-hexenols were significantly easier to discriminate than 3-hexenols, which, in turn, were significantly easier to distinguish than 2-hexenols; and (f) that odor pairs involving two cis-hexenols were significantly more difficult to discriminate than odor pairs that involved two trans-hexenols. These findings demonstrate that the presence as well as the position and configuration of a double bond affected discriminability in a systematic manner and suggest that these molecular structural features may be important determinants of the interaction between stimulus molecule and olfactory receptor and thus may affect odor quality of aliphatic alcohols.  相似文献   

2.
We tested the ability of human subjects to distinguish between aliphatic odorants sharing the same number of carbon atoms but differing in their functional groups. 1-Alcohols, n-aldehydes, 2-ketones and n-carboxylic acids of four, six and eight carbon atoms, respectively, were employed. In a forced-choice triangular test procedure 20 subjects were repeatedly presented with 18 odor pairs and asked to identify the bottle containing the odd stimulus. We found (i) that as a group, the subjects performed significantly above chance level in all tasks and thus were clearly able to discriminate between all odor pairs presented; (ii) marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly distinguish between all 18 odor pairs to subjects who failed to do so with 1/3 of the tasks; (iii) a lack of significant differences in performance between male and female, and between Japanese and German subjects; (iv) that odor pairs that involved 2-ketones and/or n-carboxylic acids were significantly easier to discriminate compared to odor pairs that involved 1-alcohols and/or n-aldehydes, and thus a clear dependence of discriminability on type of functional group; and (v) that aliphatic odorants with eight carbon atoms (irrespective of their oxygen moiety) were significantly more difficult to discriminate from each other compared to substances with four or six carbon atoms. The results suggest that functional groups may be an important determinant of the interaction between stimulus molecule and olfactory receptor in aliphatic substances, and thus may be a molecular property affecting odor quality in a substance class-specific manner.  相似文献   

3.
M Laska  P Teubner 《Chemical senses》1999,24(3):263-270
We tested the ability of human subjects to distinguish between members of homologous series of aliphatic alcohols (ethanol to n-octanol) and aldehydes (n-butanal to n-decanal). In a forced-choice triangular test procedure 20 subjects per series were repeatedly presented with all 21 binary combinations of the seven stimuli and asked to identify the bottle containing the odd stimulus. We found (i) that as a group, the subjects performed significantly above chance level in all tasks but two with the alcohols and all tasks but four with the aldehydes, and thus were clearly able to discriminate between most of the odor pairs presented; (ii) marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly distinguish between all 21 odor pairs of a series to subjects who failed to do so with the majority of tasks; and (iii) a significant negative correlation between discrimination performance and structural similarity of odorants in terms of differences in carbon chain length for both homologous series. This suggests that carbon chain length may be one of presumably several determinants of the interaction between stimulus molecule and receptor, and thus may be a molecular property affecting odor quality of aliphatic alcohols and aldehydes.  相似文献   

4.
A soil consortium was tested for its ability to degrade reformulated gasoline, containing methyl tert-butyl ether (MTBE). Reformulated gasoline was rapidly degraded to completion. However, MTBE tested alone was not degraded. A screening was carried out to identify compounds in gasoline that participate in cometabolism with MTBE. Aromatic compounds (benzene, toluene, xylenes) and compounds structurally similar to MTBE (tert-butanol, 2,2-dimethylbutane, 2,2,4-trimethylpentane) were unable to cometabolize MTBE. Cyclohexane was resistant to degradation. However, all n-alkanes tested for cometabolic activity (pentane, hexane, heptane) did enable the biodegradation of MTBE. Among the alkanes tested, pentane was the most efficient (200 &mgr;g/day). Upon the depletion of pentane, the consortium stopped degrading MTBE. When the consortium was spiked with pentane, MTBE degradation continued. When the ratio of MTBE to pentane was increased, the amount of MTBE degraded by the consortium was higher. Finally, diethylether was tested for cometabolic degradation with MTBE. Both compounds were degraded, but the process differed from that observed with pentane.  相似文献   

5.
MTBE is a gasoline additive addressed in Delaware's Risk-Based Corrective Action Program. Due to inconclusive toxicological data, MTBE is difficult to address in a risk-based fashion pertaining to actual cancer risk. MTBE action levels in Delaware's Risk-Based Corrective Action Program (DERBCAP) are based on the low end of the aesthetic range of the contaminant (10 ppb), not a health-based number. Addressing MTBE in this manner can make it very amenable to risk-based decision making. When MTBE concentrations exceed Tier 1 RBSL values, the site must be remediated to those values or modeled in Tier 2 to calculate Site Specific Target Levels (SSTLs) and demonstrate a stable and shrinking plume. A case study is provided to evaluate the applicability of MTBE in DERBCAP at a site where several shallow, private supply wells were contaminated with MTBE following a gasoline release several hundred feet up-gradient. Following well replacement and site characterization, Tier 2 modeling was performed to establish clean-up goals (RBCA Toolkit). By using initial concentrations at the POC wells and forward calculating concentrations down-gradient, clean up goals were established for the 180 and 230 m POCs at 500 and 1100 ppb, respectively. These clean up goals will be protective of the 10 ppb maximum exposure limit (MEL) established at the down-gradient point of exposure (POE). Modflow (WHI) and MT3D (Zheng 1990) were used to determine if the pump and treat remediation schedule set forth by the consultant was sufficient to remediate to the calculated clean up levels. Transient simulations showed that pumping from wells on the leading and trailing edge of the plume “core” for 1 week each month for 2 years resulted in a drop in POE and source concentrations of 40 to 60%. Although the drop is significant, the down-gradient POE would still be in jeopardy of exceeding the MEL. This suggests that additional and/or more frequent remediation may be necessary.  相似文献   

6.
Methyl tert-butyl ether (MTBE) degradation by a microbial consortium   总被引:3,自引:0,他引:3  
The widespread use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in a large number of cases of groundwater contamination. Bioremediation is often proposed as the most promising alternative after treatment. However, MTBE biodegradation appears to be quite different from the biodegradation of usual gasoline contaminants such as benzene, toluene, ethyl benzene and xylene (BTEX). In the present paper, the characteristics of a consortium degrading MTBE in liquid cultures are presented and discussed. MTBE degradation rate was fast and followed zero order kinetics when added at 100 mg l(-1). The residual MTBE concentration in batch degradation experiments ranged from below the detection limit (1 microg l(-1)) to 50 microg l(-1). The specific activity of the consortium ranged from 7 to 52 mgMTBE g(dw)(-1) h(-1) (i.e. 19-141 mgCOD g(dw) (-1) h(-1)). Radioisotope experiments showed that 79% of the carbon-MTBE was converted to carbon-carbon dioxide. The consortium was also capable of degrading a variety of hydrocarbons, including tert-butyl alcohol (TBA), tert-amyl methyl ether (TAME) and gasoline constituents such as benzene, toluene, ethylbenzene and xylene (BTEX). The consortium was also characterized by a very slow growth rate (0.1 d(-1)), a low overall biomass yield (0.11 gdw g(-1)MTBE; i.e. 0.040 gdw gCOD(-1)), a high affinity for MTBE and a low affinity for oxygen, which may be a reason for the slow or absence of MTBE biodegradation in situ. Still, the results presented here show promising perspectives for engineering the in situ bioremediation of MTBE.  相似文献   

7.
Methyl tertiary butyl ether (MTBE), an important gasoline additive, is a recalcitrant compound posing serious environmental health problems. In this study, MTBE-degrading bacteria were enriched from five environmental samples. Enrichments from Stewart Lake sediments and an MTBE contaminated soil displayed the highest rate of MTBE removal; 29.6 and 27.8% respectively, in 28 days. A total of 12 bacterial monocultures isolated from enrichment cultures were screened for MTBE degradation in liquid cultures. In a nutrient-limited medium containing MTBE as the sole source of carbon and energy, the highest rate of MTBE elimination was achieved with IsoSL1, which degraded 30.6 and 50.2% in 14 and 28 days, respectively. In a nutrient-rich medium containing ethanol and yeast extract, the bacterium (Iso2A) substantially removed MTBE (20.3 and 28.1% removal in 14 and 28 days, respectively). Based upon analysis of the 16s rRNA gene sequence and data base comparison, IsoSL1 and Iso2A were identified as a Streptomyces sp. and Sphingomonas sp., respectively. The Streptomyces sp. is a new genera of bacteria degrading MTBE and could be useful for MTBE bioremediation.  相似文献   

8.
Contamination of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic components such as benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene (BTEX). In this study, a laboratory-scale biotrickling filter for groundwater treatment inoculated with a microbial consortium degrading MTBE was studied. Individual or mixtures of BTEX compounds were transiently loaded in combination with MTBE. The results indicated that single BTEX compound or BTEX mixtures inhibited MTBE degradation to varying degrees, but none of them completely repressed the metabolic degradation in the biotrickling filter. Tert-butyl alcohol (TBA), a frequent co-contaminant of MTBE had no inhibitory effect on MTBE degradation. The bacterial consortium was stable and showed promising capabilities to remove TBA, ethylbenzene and toluene, and partially degraded benzene and xylenes without significant lag time. The study suggests that it is feasible to deploy a mixed bacterial consortia to degrade MTBE, BTEX and TBA at the same time.  相似文献   

9.
Laska M 《Chemical senses》2004,29(2):143-152
The ability of 20 human subjects to distinguish between nine enantiomeric odor pairs sharing an isopropenyl group at the chiral center was tested in a forced-choice triangular test procedure. I found (i). that as a group, the subjects were only able to significantly discriminate the optical isomers of limonene, carvone, dihydrocarvone, dihydrocarveol and dihydrocarvyl acetate, whereas they failed to distinguish between the (+)- and (-)-forms of perillaalcohol, perillaaldehyde, isopulegol and limonene oxide; (ii). marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly discriminate between eight of the nine odor pairs to subjects who failed to do so with six of the nine tasks; and (iii). that with none of the nine odor pairs the antipodes were reported to differ significantly in subjective intensity when presented at equal concentrations. Additional tests of the chemesthetic potency and threshold measurements of the optical isomers of dihydrocarvone, dihydrocarveol, and dihydrocarvyl acetate suggest that the discriminability of these three enantiomeric odor pairs is indeed due to differences in odor quality. Analysis of structure-activity relationships suggest that the combined presence of (i). an isopropenyl group at the chiral center; (ii). a methyl group at the para-position; and/or (iii). an oxygen-containing group at the meta-position allows for the discrimination of enantiomeric odor pairs.  相似文献   

10.
Methyl tertiary butyl ether (MTBE) is a gasoline additive associated with groundwater pollution at gas station sites. Previous research on poplar trees in hydroponic systems suggests that phytovolatilization is an effective mechanism for phytoremediation of MTBE (Rubin and Ramaswami, 2001), but the potential for microbial degradation of MTBE in the rhizosphere of trees had not been assessed. MTBE had largely been considered recalcitrant to microbial processes, but recent fieldwork suggests rapid biodegradation may occur in certain cases. This paper investigates the potential for rhizosphere degradation of MTBE at time frames relevant for phytoremediation. Three experiments were conducted at different levels of aggregation to examine possible degradation of MTBE by rhizosphere microorganisms that had been acclimated to low levels of MTBE for 6 weeks. MTBE soil die-away studies, conducted with both poplar trees and fescue grass, found no significant differences between MTBE concentration in vegetated and unvegetated soils over a two-week attenuation period. Closed chamber tests comparing hydroponic and rhizospheric poplar tree systems also showed essentially complete recovery of MTBE mass in both systems, suggesting an absence of degradation. Finally, rhizosphere microbes tested in aerated bioreactors were found to be thriving and metabolizing root materials, but did not show measurable degradation of MTBE. In all tests, the MTBE degradation product, Tert Butyl Alcohol (TBA), was not detected. The insignificance of MTBE degradation by rhizosphere microorganisms suggests that plant processes be the primary focus of further research on MTBE phytoremediation.  相似文献   

11.
M Laska  P Teubner 《Chemical senses》1999,24(2):161-170
We tested the ability of human subjects to distinguish between enantiomers, i.e. odorants which are identical except for chirality. In a forced-choice triangular test procedure 20 subjects were repeatedly presented with 10 enantiomeric odor pairs and asked to identify the bottle containing the odd stimulus. We found (i) that as a group, the subjects were only able to significantly discriminate the optical isomers of alpha-pinene, carvone and limonene, whereas they failed to distinguish between the (+)- and (-)-forms of menthol, fenchone, rose oxide, camphor, alpha-terpineol, beta-citronellol and 2-butanol; (ii) marked individual differences in discrimination performance, ranging from subjects who were able to significantly discriminate between 6 of the 10 odor pairs to subjects who failed to do so with 9 of the 10 tasks; (iii) that with none of the 10 odor pairs were the antipodes reported to differ significantly in subjective intensity when presented at equal concentrations; and (iv) that error rates were quite stable and did not differ significantly between sessions, and thus, we observed a lack of learning or training effects. Additional tests of the degree of trigeminality and threshold measurements of the optical isomers of alpha-pinene, carvone and limonene suggest that the discriminability of these three enantiomeric odor pairs is indeed due to differences in odor quality. These findings support the assumption that enantioselective molecular odor receptors may only exist for some but not all volatile enantiomers and thus that chiral recognition of odorants may not be a general phenomenon but is restricted to some substances.  相似文献   

12.
Effects of sprint training on plasma K+ concentration ([K+]) regulation during intense exercise and on muscle Na+-K+-ATPase were investigated in subjects with Type 1 diabetes mellitus (T1D) under real-life conditions and in nondiabetic subjects (CON). Eight subjects with T1D and seven CON undertook 7 wk of sprint cycling training. Before training, subjects cycled to exhaustion at 130% peak O2 uptake. After training, identical work was performed. Arterialized venous blood was drawn at rest, during exercise, and at recovery and analyzed for plasma glucose, [K+], Na+ concentration ([Na+]), catecholamines, insulin, and glucagon. A vastus lateralis biopsy was obtained before and after training and assayed for Na+-K+-ATPase content ([3H]ouabain binding). Pretraining, Na+-K+-ATPase content and the rise in plasma [K+] ([K+]) during maximal exercise were similar in T1D and CON. However, after 60 min of recovery in T1D, plasma [K+], glucose, and glucagon/insulin were higher and plasma [Na+] was lower than in CON. Training increased Na+-K+-ATPase content and reduced [K+] in both groups (P < 0.05). These variables were correlated in CON (r = -0.65, P < 0.05) but not in T1D. This study showed first that mildly hypoinsulinemic subjects with T1D can safely undertake intense exercise with respect to K+ regulation; however, elevated [K+] will ensue in recovery unless insulin is administered. Second, sprint training improved K+ regulation during intense exercise in both T1D and CON groups; however, the lack of correlation between plasma delta[K+] and Na+-K+-ATPase content in T1D may indicate different relative contributions of K+-regulatory mechanisms.  相似文献   

13.
Because of the extensive use of methyl tert‐butyl ether (MTBE) as an additive to increase the octane quality of gasoline, the environmental pollution by this compound has increased in recent decades. Environmental release of MTBE may lead to its entry to the blood stream through inhalation or drinking of contaminated water, and its interactions with biological molecules such as proteins. The present study was proposed to comparatively investigate the interactions of MTBE with hemoglobin (Hb) from diabetic and nondiabetic individuals using various spectroscopic methods including UV‐visible, fluorescence, chemiluminescence, and circular dichroism. These results demonstrated the effects of MTBE on heme degradation of Hb and the reaction of these degradation products with water generating reactive oxygen species. Interaction of Hb with MTBE enhanced its aggregation rate and decreased lag time, indicating the antichaperone activity of MTBE upon interaction with Hb. Furthermore, the diabetic Hb showed more severe effects of MTBE, including heme degradation, reactive oxygen species production, unfolding, and antichaperone behavior than the nondiabetic Hb. The results from molecular docking suggested that the special interaction site of MTBE in the vicinity of Hb heme group is responsible for heme degradation.  相似文献   

14.
The widespread use of Methyl tert-butyl-ether (MTBE) as a gasoline additive has resulted in a higher detection rate of MTBE in groundwater systems. Therefore, the researchers show more concern about the bioremediation of MTBE-impacted aquifers. In this paper, a MTBE-direct-degrading bacterial consortium was enriched (named RS1) and further studied. In order to identify the microbial community of the consortium, 17 and 12 different single strains were isolated from nutrient medium and MSM media (with MTBE as the sole carbon source), respectively. 16S rDNA-based phylogenetic analysis revealed that these diverse bacteria belonged to 14 genera, in which Pseudomonas was dominant. Several strains which can grow with MTBE as the sole carbon and energy source were also identified, such as M1, related to MTBE-degrading Arthrobacter sp. ATCC27778. Furthermore, the appropriate addition of certain single strain in consortium RS1 (M1:RS1 = 1:2) facilitates MTBE degradation by increasing the quantity of efficient MTBE-degrading bacteria. This work will provide microbial source and theoretical fundament for further bioremediation of MTBE-contaminated aquifers, which has applied potential and environmental importance.  相似文献   

15.
To assess the significance of the type of oxygen moiety on odor quality of aromatic compounds, I tested the ability of human subjects to distinguish between odorants sharing a benzene ring and the same total number of carbon atoms but differing in their functional groups. Phenyl ethanol, phenyl acetaldehyde, phenyl methyl ketone, methyl benzoate and phenyl acetic acid, were employed. In a forced-choice triangular test procedure 20 subjects were repeatedly presented with all possible binary combinations of the five odorants, and asked to identify the bottle containing the odd stimulus. I found (i) that as a group, the subjects performed significantly above chance level in six of the tasks whereas they failed to do so with the four other tasks; (ii) marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly distinguish between all 10 odor pairs to subjects who failed to do so with the majority of the tasks; and (iii) that odor pairs that involved methyl benzoate or phenyl methyl ketone were significantly easier to discriminate than those that involved phenyl acetaldehyde or phenyl ethanol, and thus there was a clear dependence of discriminability on type of functional group. Additional tests of the degree of trigeminality of the five aromatic substances indicated that the discriminability of the odor pairs is indeed due to differences in odor quality. A comparison of the present results with those of an earlier study that employed aliphatic odorants suggests that functional oxygen-containing groups may generally be an important determinant of the interaction between the stimulus molecule and the olfactory receptor, and thus may generally be a molecular property affecting odor quality in a substance class-specific manner. The poorer discriminatory performance of the subjects with aromatic odorants compared with corresponding aliphatic substances suggests that the structure of the alkyl rest attached to a functional group may also play a crucial role for recognition of ligands at the olfactory receptor and thus for odor quality.  相似文献   

16.
The potential for aerobic methyl tert-butyl ether (MTBE) degradation was investigated with microcosms containing aquifer sediment and groundwater from four MTBE-contaminated sites characterized by oxygen-limited in situ conditions. MTBE depletion was observed for sediments from two sites (e.g., 4.5 mg/liter degraded in 15 days after a 4-day lag period), whereas no consumption of MTBE was observed for sediments from the other sites after 75 days. For sediments in which MTBE was consumed, 43 to 54% of added [U-(14)C]MTBE was mineralized to (14)CO(2). Molecular phylogenetic analyses of these sediments indicated the enrichment of species closely related to a known MTBE-degrading bacterium, strain PM1. At only one site, the presence of water-soluble gasoline components significantly inhibited MTBE degradation and led to a more pronounced accumulation of the metabolite tert-butyl alcohol. Overall, these results suggest that the effects of oxygen and water-soluble gasoline components on in situ MTBE degradation will vary from site to site and that phylogenetic analysis may be a promising predictor of MTBE biodegradation potential.  相似文献   

17.
《Process Biochemistry》2010,45(5):794-798
The gasoline additive methyl tert-butyl ether (MTBE) can contaminate groundwater and soil. In order to eliminate it, several methods are being developed, among which bioremediation – that is, the addition of microbial cultures that can degrade the compound – holds promise. Our laboratory has identified Achromobacter xylosoxidans MCM1/1 as an MTBE-degrading bacterial strain. It degrades 78% of this chemical in 5 days. In this study we also analyze the effects of MTBE on the biology of A. xylosoxidans MCM1/1 and compare its proteomic profile after incubation with MTBE with that of unchallenged bacteria. The 2D proteomic analysis shows that the following four proteins are induced by MTBE: 50S ribosomal protein L10, amino acid-binding periplasmic protein, ATP synthase and endoribonuclease L. Characterizing the bacterial response to MTBE at the biochemical level identifies proteins that can be used by biocatalysts for soil and water bioremediation.  相似文献   

18.
With the current practice of amending gasoline with up to 15% by volume MTBE, the contamination of groundwater by MTBE has become widespread. As a result, the bioremediation of MTBE-impacted aquifers has become an active area of research. A review of the current literature on the aerobic biodegradation of MTBE reveals that a number of cultures from diverse environments can either partially degrade or completely mineralize MTBE. MTBE is either utilized as a sole carbon and energy source or is degraded cometabolically by cultures grown on alkanes. Reported degradation rates range from 0.3 to 50 mg MTBE/g cells/h while growth rates (0.01–0.05 g MTBE/g cells/d) and cellular yields (0.1–0.2 g cells/g MTBE) are generally low. Studies on the mechanisms of MTBE degradation indicate that a monooxygenase enzyme cleaves the ether bond yielding tert-butyl alcohol (TBA) and formaldehyde as the dominant detectable intermediates. TBA is further degraded to 2-methyl-2-hydroxy-1-propanol, 2-hydroxyisobutyric acid, 2-propanol, acetone, hydroxyacteone and eventually, carbon dioxide. The majority of these intermediates are also common to mammalian MTBE metabolism. Laboratory studies on the degradation of MTBE in the presence of gasoline aromatics reveal that while degradation rates of other gasoline components are generally not inhibited by MTBE, MTBE degradation could be inhibited in the presence of more easily biodegradable compounds. Controlled field studies are clearly needed to elucidate MTBE degradation potential in co-contaminant plumes. Based on the reviewed studies, it is likely that a bioremediation strategy involving direct metabolism, cometabolism, bioaugmentation, or some combination thereof, could be applied as a feasible and cost-effective treatment method for MTBE contamination.  相似文献   

19.
We asked whether odor discrimination abilities are sexually dimorphic in mice and, if so, whether the perinatal actions of estradiol contribute to these sex differences. The ability to discriminate different types of urinary odors was compared in male and female wild-type (WT) subjects and in mice with a homozygous-null mutation of the estrogen synthetic enzyme, aromatase (aromatase knockout; ArKO). Olfactory discrimination was assessed in WT and ArKO male and female mice after they were gonadectomized in adulthood and subsequently treated with estradiol benzoate. A liquid olfactometer was used to assess food-motivated olfactory discrimination capacity. All animals eventually learned to distinguish between urinary odors collected from gonadally intact males and estrous females; however, WT males as well as ArKO mice of both sexes learned this discrimination significantly more rapidly than WT females. Similar group differences were obtained when mice discriminated between urinary odors collected from gonadally intact vs. castrated males or between two non-social odorants, amyl and butyl acetate. When subjects had to discriminate volatile urinary odors from ovariectomized female mice treated with estradiol sequenced with progesterone versus estradiol alone, ArKO females quickly acquired the task whereas WT males and females as well as ArKO males failed to do so. These results demonstrated a strong sex dimorphism in olfactory discrimination ability, with WT males performing better than females. Furthermore, female ArKO mice showed an enhanced ability to discriminate very similar urinary odorants, perhaps due to an increased sensitivity of the main olfactory nervous system to adult estradiol treatment as a result of perinatal estrogen deprivation.  相似文献   

20.
A stand of five conifers (Pinus sp.) bordering a gasoline service station was studied to estimate the methyl tert-butyl ether (MTBE) emission rate from gasoline-impacted groundwater. Groundwater was impacted with gasoline oxygenates MTBE and tert-butyl alcohol (TBA) at combined concentrations exceeding 200,000 microg/L. Condensate from trees was collected in sealed environmental chambers and analyzed. Concentrations of MTBE in condensate ranged from 0.51 to 460 microg/L; TBA ranged from 12 to 4100 microg/L (n=19). Transpirate concentrations were derived from MTBE air-liquid partitioning data exhibited in controls spiked with known concentrations of analyte. Tree emissions were estimated by multiplying average transpirate concentrations by transpiration rates derived from evapotranspiration data. Stand evapotranspiration was calculated using meteorological data from the California Irrigation Management Information System (CIMIS) applied in the Standardized Reference Evapotranspiration Equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号