首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport.  相似文献   

2.
Overexpression of human apolipoprotein A-II (apo A-II) in mice induced postprandial hypertriglyceridemia and marked reduction in plasma HDL concentration and particle size [Boisfer et al. (1999) J. Biol. Chem. 274, 11564-11572]. We presently compared lipoprotein metabolism in three transgenic lines displaying plasma concentrations of human apo A-II ranging from normal to 4 times higher, under ad libitum feeding and after an overnight fast. Fasting dramatically decreased VLDL and lowered circulating human apo A-II in transgenic mice; conversely, plasma HDL levels increased in all genotypes. The apo A-I content of HDL was inversely related to the expression of human apo A-II, probably reflecting displacement of apo A-I by an excess of apo A-II. Thus, the molar ratios of apo A-II/A-I in HDL were significantly higher in fed as compared with fasted animals of the same transgenic line, while endogenous LCAT activity concomitantly decreased. The number and size of HDL particles decreased in direct proportion to the level of human apo A-II expression. Apo A-II was abundantly present in all HDL particles, in contrast to apo A-I mainly present in large ones. Two novel findings were the presence of pre-beta migrating HDL transporting only human apo A-II in the higher-expressing mice and the increase of plasma HDL concentrations by fasting in control and transgenic mice. These findings highlight the reciprocal modifications of VLDL and HDL induced by the feeding-fasting transition and the key role of the molar ratio of apo A-II/A-I as a determinant of HDL particle metabolism and pre-beta HDL formation.  相似文献   

3.
The pre-β HDL fraction constitutes a heterogeneous population of discoid nascent HDL particles. They transport from 1 to 25 % of total human plasma apo A-I. Pre-β HDL particles are generated de novo by interaction between ABCA1 transporters and monomolecular lipid-free apo A-I. Most probably, the binding of apo A-I to ABCA1 initiates the generation of the phospholipid-apo A-I complex which induces free cholesterol efflux. The lipid-poor nascent pre-β HDL particle associates with more lipids through exposure to the ABCG1 transporter and apo M. The maturation of pre-β HDL into the spherical α-HDL containing apo A-I is mediated by LCAT, which esterifies free cholesterol and thereby forms a hydrophobic core of the lipoprotein particle. LCAT is also a key factor in promoting the formation of the HDL particle containing apo A-I and apo A-II by fusion of the spherical α-HDL containing apo A-I and the nascent discoid HDL containing apo A-II. The plasma remodelling of mature HDL particles by lipid transfer proteins and hepatic lipase causes the dissociation of lipid-free/lipid-poor apo A-I, which can either interact with ABCA1 transporters and be incorporated back into pre-existing HDL particles, or eventually be catabolized in the kidney. The formation of pre-β HDL and the cycling of apo A-I between the pre-β and α-HDL particles are thought to be crucial mechanisms of reverse cholesterol transport and the expression of ABCA1 in macrophages may play a main role in the protection against atherosclerosis.  相似文献   

4.
High-density lipoprotein (HDL) is the most abundant lipoprotein particle in the plasma and a negative risk factor of atherosclerosis. By using a proteomic approach it is possible to obtain detailed information about its protein content and protein modifications that may give new information about the physiological roles of HDL. In this study the two subfractions; HDL(2) and HDL(3), were isolated by two-step discontinuous density-gradient ultracentrifugation and the proteins were separated with two-dimensional gel electrophoresis and identified with peptide mass fingerprinting, using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. Identified proteins in HDL were: the dominating apo A-I as six isoforms, four of them with a glycosylation pattern and one of them with retained propeptide, apolipoprotein (apo) A-II, apo A-IV, apo C-I, apo C-II, apo C-III (two isoforms), apo E (five isoforms), the recently discovered apo M (two isoforms), serum amyloid A (two isoforms) and serum amyloid A-IV (six isoforms). Furthermore, alpha-1-antitrypsin was identified in HDL for the first time. Additionally, salivary alpha-amylase was identified as two isoforms in HDL(2), and apo L and a glycosylated apo A-II were identified in HDL(3). Besides confirming the presence of different apolipoproteins, this study indicates new patterns of glycosylated apo A-I and apo A-II. Furthermore, the study reveals new proteins in HDL; alpha-1-antitrypsin and salivary alpha-amylase. Further investigations about these proteins may give new insight into the functional role of HDL in coronary artery diseases.  相似文献   

5.
The distribution of apolipoprotein (apo) A-I between human high-density lipoproteins (HDL) and water is an important component of reverse cholesterol transport and the atheroprotective effects of HDL. Chaotropic perturbation (CP) with guanidinium chloride (Gdm-Cl) reveals HDL instability by inducing the unfolding and transfer of apo A-I but not apo A-II into the aqueous phase while forming larger apo A-I deficient HDL-like particles and small amounts of cholesteryl ester-rich microemulsions (CERMs). Our kinetic and hydrodynamic studies of the CP of HDL species separated according to size and density show that (1) CP mediated an increase in HDL size, which involves quasi-fusion of surface and core lipids, and release of lipid-free apo A-I (these processes correlate linearly), (2) >94% of the HDL lipids remain with an apo A-I deficient particle, (3) apo A-II remains associated with a very stable HDL-like particle even at high levels of Gdm-Cl, and (4) apo A-I unfolding and transfer from HDL to water vary among HDL subfractions with the larger and more buoyant species exhibiting greater stability. Our data indicate that apo A-I's on small HDL (HDL-S) are highly dynamic and, relative to apo A-I on the larger more mature HDL, partition more readily into the aqueous phase, where they initiate the formation of new HDL species. Our data suggest that the greater instability of HDL-S generates free apo A-I and an apo A-I deficient HDL-S that readily fuses with the more stable HDL-L. Thus, the presence of HDL-L drives the CP remodeling of HDL to an equilibrium with even larger HDL-L and more lipid-free apo A-I than with either HDL-L or HDL-S alone. Moreover, according to dilution studies of HDL in 3 M Gdm-Cl, CP of HDL fits a model of apo A-I partitioning between HDL phospholipids and water that is controlled by the principal of opposing forces. These findings suggest that the size and relative amount of HDL lipid determine the HDL stability and the fraction of apo A-I that partitions into the aqueous phase where it is destined for interaction with ABCA1 transporters, thereby initiating reverse cholesterol transport or, alternatively, renal clearance.  相似文献   

6.
Two populations of high-density lipoprotein (HDL) particles exist in human plasma. Both contain apolipoprotein (apo) A-I, but only one contains apo A-II: Lp(AI w AII) and Lp(AI w/o AII). To study the extent of interaction between these particles, apo B-free plasma prepared by the selective removal of apo B-containing lipoproteins (LpB) from the plasma of three normolipidemic (NL) subjects and whole plasma from two patients with abetalipoproteinemia (ABL) were incubated at 37 degrees C for 24 h. Apo B-free plasma samples were used to avoid lipid-exchange between HDL and LpB. Lp(AI w AII) and Lp(AI w/o AII) were isolated from each apo B-free plasma sample before and after incubation and their protein and lipid contents quantified. Before incubation, ABL plasma had reduced levels of Lp(AI w AII) and Lp(AI w/o AII), (40% and 70% of normals, respectively). Compared to the HDL of apo B-free NL plasma, ABL HDL had higher relative contents of free cholesterol, phospholipid and total lipid, and contained more particles with apparent hydrated Stokes diameter in the 9.2-17.0 nm region. These differences were particularly pronounced in particles without apo A-II. Despite their differences, the total cholesterol contents of Lp(AI w AII) increased, while that of Lp(AI w/o AII) decreased in all five plasma samples and the amount of apo A-I in Lp(AI w AII) increased by 6-8 mg/dl in four during the incubation. These compositional changes were accompanied by a relative reduction of particles in the 7.0-8.2 nm Stokes diameter size region and an increase of particles in the 9.2-11.2 nm region. These data are consistent with intravascular modulation between HDL particles with and without apo A-II. The observed increase in apo A-II-associated cholesterol and apo A-I, could involve either the transfer of cholesterol and apo A-I from particles without apo A-II to those with A-II, or the transfer of apo A-II from Lp(AI w AII) to Lp(AI w/o AII). The exact mechanism and direction of the transfer remain to be determined.  相似文献   

7.
The methods for isolation of pure apolipoproteins A-I, A-II and E from the blood plasma of donors for preparation of monospecific rabbit antisera against these apolipoproteins and their estimation in human blood plasma using immunoelectrophoresis are described. It was found that the average content of apolipoprotein A-I (apo A-I) in the blood plasma of healthy males is 126.6 mg%, that of apolipoprotein A-II (apo A-II) is 56.8 mg%, that of apolipoprotein E (apo E) is 10.2 mg%. The apo A-I content in blood plasma is increased in hyper-alpha-lipoproteinemic patients and is decreased in hypo-alpha-lipoproteinemic ones, i. e. there is a direct relationship between the changes in concentration of high density lipoproteins (HDL) and apo A-I. The concentration of apo A-II in dis-alpha-lipoproteinemias varies within a narrow range. A considerable increase of the alpha-cholesterol/apo A-I ratio suggesting an increased capacity of HDL to transport cholesterol in hyper-alpha-lipoproteinemic patients is observed. There exists an indirect correlation between the changes in the contents of apo A-I and apo E in dis-alpha-lipoproteinemic patients.  相似文献   

8.
Previous studies have provided detailed information on the formation of spherical high density lipoproteins (HDL) containing apolipoprotein (apo) A-I but no apoA-II (A-I HDL) by an lecithin:cholesterol acyltransferase (LCAT)-mediated process. In this study we have investigated the formation of spherical HDL containing both apoA-I and apoA-II (A-I/A-II HDL). Incubations were carried out containing discoidal A-I reconstituted HDL (rHDL), discoidal A-II rHDL, and low density lipoproteins in the absence or presence of LCAT. After the incubation, the rHDL were reisolated and subjected to immunoaffinity chromatography to determine whether A-I/A-II rHDL were formed. In the absence of LCAT, the majority of the rHDL remained as either A-I rHDL or A-II rHDL, with only a small amount of A-I/A-II rHDL present. By contrast, when LCAT was present, a substantial proportion of the reisolated rHDL were A-I/A-II rHDL. The identity of the particles was confirmed using apoA-I rocket electrophoresis. The formation of the A-I/A-II rHDL was influenced by the relative concentrations of the precursor discoidal A-I and A-II rHDL. The A-I/A-II rHDL included several populations of HDL-sized particles; the predominant population having a Stokes' diameter of 9.9 nm. The particles were spherical in shape and had an electrophoretic mobility slightly slower than that of the alpha-migrating HDL in human plasma. The apoA-I:apoA-II molar ratio of the A-I/A-II rHDL was 0.7:1. Their major lipid constituents were phospholipids, unesterified cholesterol, and cholesteryl esters. The results presented are consistent with LCAT promoting fusion of the A-I rHDL and A-II rHDL to form spherical A-I/A-II rHDL. We suggest that this process may be an important source of A-I/A-II HDL in human plasma.  相似文献   

9.
Two populations of apolipoprotein (apo) A-I-containing lipoprotein particles are found in high density lipoproteins (HDL): those that also contain apo A-II[Lp(A-I w A-II)] and those that do not [Lp(A-I w/o A-II)]. Lp(A-I w/o A-II) comprised two distinct particle sizes with mean hydrates Stokes diameter of 10.5 nm for Lp(A-I w/o A-II)1 and 8.5 nm for Lp(A-I w/o A-II)2. To study the effect of ultracentrifugation on these particles, Lp(A-I w/o A-II) and Lp(A-I w A-II) were isolated from the plasma and the ultracentrifugal HDL (d 1.063-1.21 g/ml fractions) of five normolipidemic and three hyperlipidemic subjects. The size subpopulations of these particles were studied by gradient polyacrylamide gel electrophoresis. Several consistent differences were detected between plasma Lp(A-I w/o A-II) and HDL Lp(A-I w/o A-II). First, in all subjects, the relative proportion of Lp(A-I w/o A-II)1 to Lp(A-I w/o A-II)2 isolated from HDL was reduced. Second, particles larger than Lp(A-I w/o A-II)1 and smaller than Lp(A-I w/o A-II)2 were considerably reduced in HDL. Third, a distinct population of particles with approximate Stokes diameter of 7.1 nm usually absent in plasma was detected in HDL Lp(A-I w/o A-II). Little difference in subpopulation distribution was detected between Lp(A-I w A-II) isolated from the plasma and HDL of the same subject. When plasma Lp(A-I w/o A-II) and Lp(A-I w A-II) were centrifuged, 14% and 4% of A-I were, respectively, recovered in the D greater than 1.21 g/ml fraction. Only 2% A-II was found in this density fraction. These studies show that the Lp(A-I w/o A-II) particles are less stable than Lp(A-I w A-II) particles upon ultracentrifugation. Among the various Lp(A-I w/o A-II) subpopulations, particles larger than Lp(A-I w/o A-II)1 and smaller than Lp(A-I w/o A-II)2 are most labile.  相似文献   

10.
The extent to which lipid and apolipoprotein (apo) concentrations in tissue fluids are determined by those in plasma in normal humans is not known, as all studies to date have been performed on small numbers of subjects, often with dyslipidemia or lymphedema. Therefore, we quantified lipids, apolipoproteins, high density lipoprotein (HDL) lipids, and non-HDL lipids in prenodal leg lymph from 37 fasted ambulant healthy men. Lymph contained almost no triglycerides, but had higher concentrations of free glycerol than plasma. Unesterified cholesterol (UC), cholesteryl ester (CE), phosphatidylcholine (PC), and sphingomyelin (SPM) concentrations in whole lymph were not significantly correlated with those in plasma. HDL lipids, but not non-HDL lipids, were directly related to those in plasma. Lymph HDLs were enriched in UC. However, as the HDL cholesterol/non-HDL cholesterol ratio in lymph exceeded that in plasma, whole lymph nevertheless had a lower UC/CE ratio than plasma. Lymph also had a significantly higher SPM/PC ratio. The lymph/plasma (L/P) ratios of apolipoproteins were as follows: A-IV > A-I and A-II > C-III and E > B. Comparison with the L/P ratios of seven nonlipoprotein proteins suggested that apoA-IV was predominantly lipid free. Concentrations of apolipoproteins A-II, A-IV, C-III, and E in lymph, but not of apolipoproteins A-I or B, were positively correlated with those in plasma. The L/P ratios of apolipoproteins B, C-III, and E in two subjects with lipoprotein lipase (LPL) deficiency, and of apolipoproteins A-I and A-IV in a subject with lecithin:cholesterol acyltransferase (LCAT) deficiency, were low relative to those in normal subjects. Thus, the concentrations of lipids, apolipoproteins, and lipoproteins in human tissue fluid are determined only in part by their concentrations in plasma. Other factors, including the actions of LPL and LCAT, are at least as important.  相似文献   

11.
The nature of the interaction of high density lipoproteins (HDL), formed during lipolysis of human very low density lipoprotein (VLDL) by perfused rat heart, with subfractions of human plasma HDL was investigated. Perfusate HDL, containing apoliproproteins (apo) E, C-II, and C-III but no apo A-I or A-II, was incubated with a subfraction of HDL (HDL-A) containing apo A-I and A-II, but devoid of apo C-II, C-III, and E. The products of the incubation were resolved by heparin-Sepharose or hydroxylapatite chromatography under conditions which allowed the resolution of the initial HDL-A and perfusate HDL. The fractions were analyzed for apolipoprotein content and lipid composition and assessed for particle size by electron microscopy. Following the incubation, the apo-E-containing lipoproteins were distinct from perfusate HDL since they contained apo A-I as a major component and apo C-II and C-III in reduced proportions. However, the HDL-A fraction contained apo C-II and C-III as major constituents. Associated with these changes in apolipoprotein composition, the apo-E-rich lipoproteins acquired cholesteryl ester from the HDL-A fraction and lost phospholipid to the HDL-A fraction. The HDL-A fraction maintained a low unesterified cholesterol/phospholipid molar ratio (0.23), while the apo-E-containing lipoproteins possessed a high ratio (0.75) characteristic of the perfusate HDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Interaction between high density lipoproteins (HDL) and liposomes results in both a structural modification of HDL and the generation of new pre-β HDL-like particles. Here, phosphatidylcholine liposomes and human HDL were incubated at liposomal phospholipid/HDL phospholipid (L-PL/HDL-PL) ratios of 1:1, 3:1 and 5:1 with a subsequent assessment of the distribution of apolipoprotein (apo) A-I, apo A-II, free cholesterol (FC) and PL between newly generated pre-β mobility lipoproteins and non-disrupted liposomes. Both at L-PL/HDL-PL ratios of 3:1 and 5:1 the fraction of liposomal-derived PL associated with pre-β fraction was significantly higher than those accepted by α-HDL. We found that 78% of apo A-I released from HDL was incorporated into pre-β mobility fraction. The relative contents of PL and apo A-I in pre-β fraction were constant irrespective of the initial L-PL/HDL-PL ratio in the incubation mixture and accounted for approximately 83 and 11%, respectively. Apo A-II was detached from HDL to a similar extent as apo A-I and distributed evenly between pre-β fraction and non-disrupted liposomes. Apo A-II constituted approximately 1%, by weight, in these fractions at all L-PL/HDL-PL ratios investigated. It corresponded approximately to 10% of pre-β fraction protein mass. Both liposomes and pre-β fraction accepted comparable amounts of FC released from HDL. This data indicated that during the interaction between human HDL and phosphatidylcholine liposome apo A-II participates both in structural modification of liposomes and in the generation of pre-β mobility fraction of constant content of PL, apo A-I and apo A-II. Involvement of apo A-II in HDL–liposome interaction may influence the anti-atherogenic properties of liposomes.  相似文献   

13.
High-density lipoprotein (HDL) subclasses 2 and 3 prepared by density gradient ultracentrifugation have been further fractionated by immunoaffinity chromatography using antibody affinity gels targetting the major HDL apolipoproteins, A-I and A-II. Fractions containing A-I without A-II (AI w/o AII) and A-I with A-II (AI w AII) were isolated from both density ranges. Whereas there were similar concentrations of the major subfraction (HDL3(AI w AII] in both males and females, the remaining subfractions were present in higher concentrations in females as compared to males, in the order HDL3 (AI w/o AII) less than HDL2(AI w AII) less than HDL2(AI w/o AII). The difference was most marked for HDL2 (AI w/o AII), where plasma concentrations in females were almost 3-fold greater than in males. Compositional analyses indicated that the plasma concentrations of the fractions, rather than their compositions, were the major determinants of male-female differences in HDL levels. In contrast, fractions defined by similar apolipoprotein criteria and isolated from different density subclasses (i.e., HDL2(AI w/o AII) vs. HDL3(AI w/o AII) and HDL2(AI w AII) vs. HDL3(AI w AII] showed major compositional differences. This is suggestive of distinct lipoprotein particles.  相似文献   

14.
Apolipoprotein (apo)A-II is a major high density lipoprotein (HDL) protein; however, its role in lipoprotein metabolism is largely unknown. Transgenic (Tg) mice that overexpress human apoA-II present functional lecithin: cholesterol acyltransferase deficiency, HDL deficiency, hypertriglyceridemia and, when fed an atherogenic diet, increased non-HDL cholesterol and increased susceptibility to atherosclerosis. In contrast to humans, mice do not present cholesteryl ester transfer protein (CETP) activity in plasma. To study the in vivo interaction of these two proteins, we crossbred human apoA-II and CETP-Tg mice. CETP x apoA-II-Tg mice fed an atherogenic diet, compared with CETP-Tg mice presented a 2-fold decrease in HDL cholesterol and a quantitatively similar increase in total plasma cholesterol and percentage of free cholesterol, non-HDL cholesterol, and free fatty acids, together with a remarkable 112-fold increase in plasma triglycerides. Plasma triglycerides in CETP x apoA-II-Tg mice were mainly associated with very low density lipoproteins (VLDL), which were also enriched in protein content, and resulted from a combination of higher production rate compared with both of their progenitors and non-Tg control mice, and decreased catabolism compared only with CETP-Tg mice. These results show CETP x apoA-II-Tg mice to be a good model with which to study mechanisms leading to VLDL overproduction and suggest that CETP and, in particular apoA-II, may play a role in the regulation of VLDL metabolism.  相似文献   

15.
Lipoprotein(a) (Lp(a)) is an atherosclerosis-causing lipoprotein that circulates in human plasma as a complex of low density lipoprotein (LDL) and apolipoprotein(a) (apo(a)). It is not known whether apo(a) attaches to LDL within hepatocytes prior to secretion or in plasma subsequent to secretion. Here we describe the development of a line of mice expressing the human apo(a) transgene under the control of the murine transferrin promoter. The apo(a) was secreted into the plasma, but circulated free of lipoproteins. When human (h)-LDL was injected intravenously, the circulating apo(a) rapidly associated with the lipoproteins, as determined by nondenaturing gel electrophoresis. Human HDL and mouse LDL had no such effect. When h-VLDL was injected, there was a delayed association of apo(a) with the lipoprotein fraction which suggests that apo(a) preferentially associated with a metabolic product of VLDL. The complex of apo(a) with LDL formed both in vivo and in vitro was resistant to boiling in the presence of detergents and denaturants, but was resolved upon disulfide reduction. These studies suggest that apo(a) fails to associate with mouse lipoproteins due to structural differences between human and mouse LDL, and that Lp(a) formation can occur in plasma through the association of apo(a) with circulating LDL.  相似文献   

16.
The A-I Milano variant of apolipoprotein A-I (A-IM), by virtue of its Arg-173----Cys substitution, is capable of forming a disulfide bond with the 77-amino-acid apolipoprotein A-II polypeptide (A-IIS) as well as with itself to produce dimers, A-IM/A-IIS and A-IM/A-IM, respectively. A-I-containing lipoproteins (Lp): particles with A-II (Lp(A-I with A-11)) and particles without A-II (Lp(A-I without A-II)) in the plasma of two nonhyperlipidemic A-IM carriers were investigated to determine the effect of A-IM on these lipoproteins. Despite the existence of abnormal apolipoprotein dimers and the unusually low HDL cholesterol (17 and 14 mg/dl), A-I (67 and 75 mg/dl), and A-II (18 and 18 mg/dl) levels in the two carriers, the plasma A-I of the carriers was distributed between Lp(A-I with A-II) and Lp(A-I without A-II) in a proportion comparable to that observed in normals. As expected, A-IM/A-IIS mixed dimer was found in carrier Lp(A-I with A-II). However, A-IM/A-IM dimer was located almost exclusively in carrier Lp(A-I without A-II). Chemical (dimethylsuberimidate) crosslinking of the protein moieties of the major subpopulations of Lp(A-I with A-II) and Lp(A-I without A-II) of normal and A-IM carriers showed that Lp(A-I with A-II), which is located predominantly in the 7.8-9.7 nm interval ((HDL2a + 3a + 3b)gge), had an apparent protein molecular weight equivalent to two molecules of A-I and one to two molecules of A-II per particle. Most of the Lp(A-I without A-II) particles, located predominantly in the size intervals of 9.7-12.9 nm (designated (HDL2b)gge) and 8.2-8.8 nm (HDL3a)gge) had protein moieties exhibiting a molecular weight equivalence predominantly of four and three molecules of A-I, respectively. A small quantity of particles with apparent protein content of two molecules of A-I in the 7.2-8.2 nm interval ((HDL3b + 3c)gge) was also detected. These studies showed that in nonhyperlipidemic A-IM carriers, the occurrence of apolipoprotein dimers had not markedly affected the protein stoichiometry of Lp(A-I with A-II) and Lp(A-I without A-II).  相似文献   

17.
The effects of injection of purified human or rat apolipoprotein (apo) A-I (1.7 mg/100 g body weight) on the size and composition of rat high density lipoprotein (HDL) particles have been investigated. The injection of human apo A-I results in the formation (over a period of 3 to 6 h) of a population of smaller HDL particles resembling human HDL3. This population of smaller particles contains human apo A-I and rat apo A-IV but lacks rat apo A-I and rat apo E. Small HDL3-like particles are not detected in rat plasma following the injection of rat apo A-I. Associated with the injection of either human or rat apo A-I is a gradual increase of plasma cholesterol levels of 20 to 50% (over 24 h) and the appearance of larger HDL particles. The results suggest that the smaller HDL particles in human plasma compared to rat plasma are not simply due to the action of lipid modifying enzymes or lipid transfer proteins but a specific property of human apo A-I.  相似文献   

18.
We have devised a new method for the fractionation of human plasma high density lipoprotein (HDL). The HDL was chromatographed on DEAE-agarose columns using a continuous gradient of 0.06--0.15 M NaCl. The elution pattern obtained showed three phases, each with differing peptide composition. Examination of the three subfraction showed that each contained both apoA-I and apo A-II, but in different proportions. Subfraction 1 contained no apo C-II or C-III-1 and only a trace of apo C-III-2, subfraction 2 contained apo C-II and C-III-1 but no C-III-2, while subfraction 3 contained considerable apo C-III-2 with only traces of apo C-II or C-III-1.  相似文献   

19.
Various combinations of incorporation and addition of apolipoprotein A-I (apo A-I) and apolipoprotein A-II (apo A-II) individually or together to a defined lecithin-cholesterol (250/12.5 molar ratio) liposome prepared by the cholate dialysis procedure were used to study the effect of apo A-II on lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) activity of both purified enzyme preparations and plasma. When apo A-I (0.1-3.0 nmol/assay) alone was incorporated or added to the liposome, apo A-I effectively activated the enzyme. By contrast, when apo A-II (0.1-3.0 nmol/assay) alone was incorporated into or added to the liposome, apo A-II exhibited minimal activation of LCAT activity, approximately 1% of the activity obtained by an equal amount of apo A-I. Addition of apo A-II (0.1-3.0 nmol/assay) together with apo A-I (0.8 nmol/assay) to the liposome reduced the LCAT activity to approximately 30% of the level obtained with addition of apo A-I alone. On the other hand, addition of apo A-II (0.1-3.0 nmol/assay) or addition of lecithin-cholesterol liposome containing apo A-II (0.1-3.0 nmol/assay) to lecithin-cholesterol liposome containing apo A-I (0.8 nmol/assay) did not significantly alter apo A-I activation of LCAT activity. However, when the same amounts (0.1-3.0 nmol/assay) of apo A-II were incorporated together with apo A-I (0.8 nmol/assay) into the liposome, apo A-II significantly stimulated LCAT activity as compared to activity obtained with incorporation of apo A-I alone. The maximal stimulation was obtained with 0.4 nmol apo A-II/assay for both purified and plasma enzyme. At this apo A-II concentration, approximately 4-fold and 1.8-fold stimulation was observed for purified enzyme and plasma enzyme, respectively. These results indicated that apo A-II must be incorporated together with apo A-I into lecithin-cholesterol liposomes to exert its stimulatory effect on LCAT activity and that apo A-II in high-density lipoprotein may play an important role in the regulation of LCAT activity.  相似文献   

20.
High-density lipoproteins (HDLs) are complexes of proteins (mainly apoA-I and apoA-II) and lipids that remove cholesterol and prevent atherosclerosis. Understanding the distinct properties of the heterogeneous HDL population may aid the development of new diagnostic tools and therapies for atherosclerosis. Mature human HDLs form two major subclasses differing in particle diameter and metabolic properties, HDL2 (large) and HDL3 (small). These subclasses are comprised of HDL(A-I) containing only apoA-I, and HDL(A-I/A-II) containing apoA-I and apoA-II. ApoA-I is strongly cardioprotective, but the function of the smaller, more hydrophobic apoA-II is unclear. ApoA-II is thought to counteract the cardioprotective action of apoA-I by stabilizing HDL particles and inhibiting their remodeling. To test this notion, we performed the first kinetic stability study of human HDL subclasses. The results revealed that the stability of plasma spherical HDL decreases with increasing particle diameter; which may facilitate preferential cholesterol ester uptake from large lipid-loaded HDL2. Surprisingly, size-matched plasma HDL(A-I/A-II) showed comparable or slightly lower stability than HDL(A-I); this is consistent with the destabilization of model discoidal HDL observed upon increasing the A-II to A-I ratio. These results clarify the roles of the particle size and protein composition in HDL remodeling, and help reconcile conflicting reports regarding the role of apoA-II in this remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号