首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In acute experiments on dogs under nembutal anaesthesia the pressure and blood flow in the vessels supplying the liver have been recorded simultaneously with registration of the hepatic blood content changes. Catecholamines injected into liver vessels have been found to change significantly the liver circulation: adrenaline and noradrenaline evoke the constriction of intrahepatic vessels and decrease the blood content in the liver, realising through the alpha-adrenoreceptors activation, isadrin causes a weak vasodilatation by the activation of beta-adrenoreceptors. A selective inactivation of isadrin in the liver is shown. The density of alpha-adrenoreceptors distribution in the intrahepatic vessels is large enough and apparently some times exceeds the density of beta-adrenoreceptors. In 1/3 of dogs the beta-adrenoreceptors in the liver vascular bed are absent at all or present in arterial bed only.  相似文献   

2.
To elucidate role of intra- and extracellular Ca2+ in regulation of rhythm and strength of frog heart contractions, there were studied ECC and isometric contraction of myocardium preparations in response to verapamil, adrenaline, and blockers of alpha- and beta-adrenoreceptors. It has been shown that after an intramuscular injection of verapamil (6 mg/kg), bradycardia develops, the heart rate (HR) decreasing by 50-70 %. Further, the cardiac arrest occurred; however, administration to the animals of adrenaline (100 mg/kg) restored the cardiac rhythm for a short while. After an intramuscular injection of adrenaline at doses of 0.1-10 mg/kg, no essential changes were observed in the potential action amplitude and HR; an increase of the administered adrenalin concentration to 100 mg/kg was not accompanied by the cardiac rhythm stimulation, as this takes place in homoiothermal animals and human; on the contrary, an essential HR deceleration was revealed. Phentolamine (5 mg/kg) gradually decelerated HR rhythm by 32-45 %. The potential amplitude changed insignificantly. A subsequent intracardiac injection of adrenaline (100 mg/kg) on the background of block of alpha-adrenoreceptors produced acceleration of the rhythm (by 13-21%) and fall of the electrogram amplitude. These results can indicate that in the frog heart, phentolamine interacts predominanty with alpha-adrenoreceptors. An intracardiac administration of propranolol (1 mg/kg) to frogs promoted inhibition of beta-adrenergic receptors and produced a gradual cardiac rhythm deceleration. In experiments on assessment of verapamil effect on the character of contractions this preparation at a concentration of 150 microM was established to produce a significant dosedependent decrease of the contraction strength. A rise of verapamil concentration in the sample to 200 microM led to a decrease of the amplitude, on average, by 68-70 % and in individual preparations -- by 80-85 %; however, administration into the sample of adrenaline (10 microM) restored the cardiac contraction strength. Adrenaline (1 nM--100 microM) increased markedly the contraction amplitude. Phentolamine (10 microM) did not inhibit transmission of contractile signal to cardiomyocytes; this was manifested in that the contraction amplitude after addition of adrenaline (10 microM) into the sample was approximately the same as in the sample containing no phentolamine. Propranolol (10 microM) eliminated the stimulatory action of adrenaline (10 microM). The results of these experiments indicate that in the frog ventricular cardiomyocytes the main adrenaline acceptors are beta-adrenoreceptors.  相似文献   

3.
Experiments on cats were made to study the capability of adrenaline, tropaphen and propranolol of influencing the intensity of the release of hemocoagulating compounds and anticoagulants from the intestinal vessels and tissues to the bloodstream (perfusate). Adrenaline was found to increase the coagulative activity of the perfusate, provoking an enhanced release into it of thromboplastin, an analogue of plasma factor V and antiheparin compounds and suppressing the release of antithromboplastins. The blockade of the alpha-adrenoreceptors was accompanied by a dramatic increase of antithromboplastins to the intestinal perfusate, whereas the depression of the activity of beta-adrenergic structures by reduction of the release of tissue thromboplastin inhibitors. It is concluded that regulation of the release of antithromboplastins in the intestine is mediated by the structures similar in their characteristics to alpha- and beta-adrenoreceptors.  相似文献   

4.
A study was made of the effect of stimulating alpha- and beta-adrenoreceptors on the mitotic activity of the rat regenerating liver following resection. Mesaton, a stimulator of alpha-adrenoreceptors, and isadrin, a stimulator of beta-adrenoreceptors, in a dose of 0.2 mg/kg were injected one hour before liver resection or 30 min, 8 and 24 h after operation. In all experimental groups, mesaton gave rise to an increase in the mitotic index without lowering the coefficient of the mitotic phases. The least pronounced stimulating effect was attained when mesaton was injected 9 hours after partial hepatectomy. Isadrin reduced the mitotic activity as judged from the decrease of the coefficient of the phases and augmentation of the number of binuclear cells. The experiments confirmed a previously advanced assumption that stimulation of alpha-adrenoreceptors favours while that of beta-adrenoreceptors reduces cell proliferation.  相似文献   

5.
Whether or not alpha- and beta-adrenoreceptors are non-identical binding sites on the same protein is still an open question. We investigated the effects of sulfhydryl reagents and dithiothreitol on the binding of [3H]dihydroalprenolol and [3H]dihydroergocryptine to beta- and alpha-adrenoreceptors of rat liver plasma membranes. Dithiothreitol inhibited the binding of [3H]dihydroalprenolol to the beta-adrenoreceptor, whereas it had no effect on the specific binding of [3H]dihydroergocryptine to the alpha-adrenoreceptor. In contrast, mersalyl, a mercurial SH reagent, readily blocked the alpha-adrenoreceptor and, although to a lesser extent the beta-adrenoreceptor. The interaction of mersalyl with the alpha-adrenoreceptors was almost instantaneous. In contrast, under the same experimental conditions, the inactivation of the beta-adrenoreceptors was much slower (t 1/2 : 7 min). Finally, a marked difference in the accessibility of the SH groups to mersalyl was observed between the alpha- and beta-adrenoreceptors. The presence of 15 microM (-)-epinephrine or 1.5 microM phentolamine was sufficient to prevent the blockade of the alpha-adrenoreceptor by mersalyl, but inactivation of the beta-adrenoreceptor by mersalyl was not modified by 500 microM (-)-epinephrine and was only slightly decreased by 50 microM (-)-propranolol. Thus, the alpha- and beta-adrenoreceptors from rat liver plasma membranes exhibited biochemical differences which may be interpreted in favor of their molecular individuality.  相似文献   

6.
In the preceding paper (Kawai, H. et al. (1992) Biochim. Biophys. Acta 1133, 172-178), we reported that in mastocytoma P-815 cells dexamethasone and 12-O-tetradecanoylphorbol-13-acetate (TPA) synergistically enhanced the de novo synthesis of L-histidine decarboxylase (HDC). Here we found that Ca2+ acted synergistically with cAMP in the induction of HDC mRNA and HDC activity in mastocytoma P-815 cells, and that the mechanism underlying the enzyme induction by Ca2+ plus cAMP was distinguishable from that by dexamethasone plus TPA. Ca2+ ionophore A23187, itself having no significant activity, markedly enhanced the induction of HDC activity by N6,O2'-dibutyryl cAMP (db cAMP) or cAMP-inducible prostaglandins such as PGE1, PGE2 and PGI2 in the presence of the phosphodiesterase inhibitor, Ro201724. However, A23187 had little effect on increases in HDC activity induced by other known stimulants, such as TPA, dexamethasone and sodium butyrate. These results suggest that A23187 has a specific effect on the induction of HDC activity due to an increased level of cAMP. The finding that both A23187 and cAMP enhanced HDC activity suggests that both Ca2+/calmodulin and cyclic nucleotide dependent protein kinase play essential roles in the process of enhancement of HDC activity. To examine this possibility, we studied the effects of W-7, an inhibitor of calmodulin, removal of extracellular Ca2+, and H-8, an inhibitor of cAMP-dependent protein kinase, on the enhancing activity of A23187 plus db cAMP. The enhancement of HDC activity by A23187 plus db cAMP was inhibited by W-7, removal of extracellular Ca2+, and H-8. The increase in HDC activity was due to the de novo synthesis of the enzyme, since it was suppressed by the addition of cycloheximide or actinomycin D, and was well correlated with the marked accumulation of a 2.7 kilobase HDC mRNA. Furthermore, the mechanism underlying the induction of HDC by db cAMP plus A23187 is distinguishable from that in the case of dexamethasone plus TPA, since preexposure to dexamethasone plus TPA for 12 h, for a plateau level to be reached, did not affect the subsequent increase in HDC activity due to db cAMP plus A23187.  相似文献   

7.
Two forms of a cAMP phosphodiesterase were found in the superior cervical ganglia of the rat. The influence of various detergents on solubility and activity of the enzyme was studied. Two Km values were determined, one of 0.9mum and the other 270mum cAMP. Separation by polyacrylamide disc electrophoresis revealed four distinct peaks of enzyme activity. One of these activities was increased when ganglia were incubated with adrenaline for at least 4 h. The increase caused by adrenaline was unaffected when ganglia were pre-incubated with cycloheximide, but was blocked in the presence of propranolol, a beta-adrenergic antagonist. Incubation with dibutyryl cAMP for 4 h mimicked the effect of adrenaline. Brief incubation with adrenaline was without effect. Electrophoresis in the presence of 0.1% Lubrol W, a non-ionic detergent, showed that one band of activity disappeared, while the main peak of enzyme activity increased in size. Two-dimensional starch gel electrophoresis confirmed the results of the disc electrophoresis.  相似文献   

8.
I.V. administration of serotonin (2 mg kg(-1)) to alert rabbits changed the ileal, caecal, and colon motility including excitatory and inhibitory components. Initial rise of contractile activity was quickly replaced by its diminishing followed by a longer enhancement of the motility, and then by the final, inhibitory, phase. Under blockade of beta1- and beta2-adrenoreceptors with propranolol inhibition of ileal and caecal contractile activity with serotonin was preserved, the effect of circulating catecholamines on beta-adrenoreceptors of smooth muscle cells seems to be excluded as a cause of the serotonin inhibitory effect. In conditions of blockade of pre- and postsynaptic alpha-adrenoreceptors with phentolamine, there was no significant diminishing of the contractile activity in the ileo-caecal zone below the initial level induced by serotonin in control experiments. Intensification of the ileo-caecal zone contractile activity under the effect of serotonin persisted in conditions of blockade of muscarinic cholinoreceptors and was proceeding with participation of non-cholinergic excitatory mechanism.  相似文献   

9.
Hepatic phosphoenolpyruvate carboxykinase (PEPCK) is significantly increased in the hyperthyroid starved rat, and moderately decreased in the hypothyroid starved rat. As tri-iodothyronine by itself has only a small and sustained effect on the induction of this enzyme, as was previously shown in the isolated perfused organ, the effect of hypo- and hyper-thyroidism on the increase in cytosolic PEPCK provoked by dibutyryl cyclic AMP (Bt2cAMP) was investigated in vivo and in the isolated perfused liver. Compared with euthyroid fed controls, in hypothyroid fed rats Bt2cAMP provoked in 2 h only a small increase in translatable mRNA coding for PEPCK. In contrast, in hyperthyroid animals PEPCK mRNA as measured by translation in vitro was already increased in the fed state, and further enhanced by Bt2cAMP injection to values as in euthyroid controls. Under all thyroid states a close correlation between PEPCK mRNA activity and PEPCK synthesis was observed. In the isolated perfused liver from the hyperthyroid fed rat, the increase in PEPCK provoked by Bt2cAMP or Bt2cAMP + isobutylmethylxanthine was considerably enhanced compared with those obtained in livers of hypothyroid rats. Also, adrenaline provoked a stimulated induction of PEPCK in hyperthyroid rats compared with hypothyroid rats. To summarize, our data indicate that the primary action of thyroid hormones on the synthesis of hepatic cytosolic PEPCK is to accelerate the cyclic AMP- or adrenaline-induction of the enzyme, acting primarily at a pretranslational level.  相似文献   

10.
11.
The alteration of acetylcholinesterase (ACHE) activity, a marker enzyme of erythroid differentiation, was studied during the hemin-induced erythroid differentiation of K562 human leukemia cells in suspension culture. The kinetics of postinduction differentiation was followed by determining the hemoglobin (Hb) content and the ACHE activity of cells. Embryonic hemoglobins as well as small quantities of fetal Hb (HbF) were synthetized by stimulated cells. The peaks of ACHE activity preceded the highest level of Hb content and, following induction, reached their pinnacles at 72 and 120 hours, respectively. These data indicate that ACHE activity is an earlier and more sensitive marker for hemin-induced erythroid differentiation of K562 cells than is elevated Hb content. Electrophoretic mobility of ACHE from hemin-treated cells proved to be the fetal type, but after incubation with neuraminidase, the rate of migration decreased to the level of the adult type enzyme.  相似文献   

12.
The enhancement of ergot alkaloid production by tryptophan and its analogues in both normal and high-phosphate cultures is more directly related to increased dimethylallyltryptophan (DMAT) synthetase activity rather than to a lack of regulation of the tryptophan biosynthetic enzymes. Thiotryptophan [beta-(1-benzo-thien-3-yl)-alanine] is rather ineffective in the end product regulation of tryptophan biosynthesis, whereas tryptophan and 5-methyltryptophan are potent effectors. The presence of increased levels of DMAT synthetase in ergot cultures supplemented with tryptophan or thiotryptophan, and to a lesser extent with 5-methyltryptophan, suggests that the induction effect involves de novo synthesis of the enzyme. Thiotryptophan and tryptophan but not 5-methyltryptophan can overcome the block of alkaloid synthesis by inorganic phosphate. The results with thiotryptophan indicate that the phosphate effect cannot be explained merely on the basis of a block of tryptophan synthesis.  相似文献   

13.
The effect of tetradecanoylphorbol acetate (TPA) on follicle-stimulating hormone (FSH)-induced synthesis of the cholesterol side-chain cleavage (SCC) enzyme complex was studied in rat ovarian granulosa cells cultured for 48 h in serum-free medium. Cell proteins were radiolabeled with [35S]methionine, followed by immunoprecipitation of cholesterol side-chain cleavage cytochrome P-450 (P-450SCC) as well as the iron-sulfur protein adrenodoxin. Polyacrylamide gel electrophoresis and fluorography of the immunoprecipitates showed that TPA, when added in combination with FSH (50 ng/ml) or dibutyryl cAMP (Bt2cAMP; 1 mM), suppressed the stimulatory effects of these compounds on the synthesis of the SCC components in a concentration-dependent fashion. The effect of TPA was accompanied by decreased progesterone formation and decreased cAMP accumulation. The structural analog of TPA, phorbol-4 alpha-didecanoate, which does not activate protein kinase C (Ca2+/phospholipid-dependent enzyme), had no effect on the FSH- or Bt2cAMP-stimulated synthesis of SCC and progesterone or on cAMP formation. In addition to inhibiting the synthesis of these proteins, TPA greatly reduced the FSH- and Bt2cAMP-induced increase in levels of mRNA encoding the precursor form of P-450SCC. It is concluded that the effect of the phorbol ester TPA to inhibit FSH-stimulated progesterone formation in cultured ovarian granulosa cells of the rat involves decreased synthesis of the components of the SCC enzyme complex due to reduced levels of mRNA encoding the precursor forms of these proteins. The results are indicative that TPA not only inhibits FSH-mediated stimulation of cAMP formation but also may block cAMP-mediated induction of SCC synthesis. It is postulated that the effects of TPA may reflect the physiological role of protein kinase C in the regulation of ovarian steroidogenesis.  相似文献   

14.
The influence of intraventricular injections of alpha- and beta-adrenergic substances (mesaton, phentolamine, isadrin, and propranolol) was investigated in cats. It was found that the central alpha-adrenoreceptors were involved in the shivering activating system and beta-adrenoreceptors -- in the inhibitory one.  相似文献   

15.
16.
Administration of catecholamines to rats or their addition to liver and heart homogenates activates (by 30-50%) mitochondrial transhydrogenase in the direction of hydride-ion transfer NADPH----NAD+ via beta-adrenoreceptors and cAMP. Glucagon administration also increases by 48% the transhydrogenase activity of liver mitochondria. cAMP (1 microM) incubated with both liver homogenates and mitochondria exerts an independent activating effect on transhydrogenase. The effect of cAMP is specific and is expressed as an increase of V. The integrity of mitochondrial membranes is crucial for the manifestation of cAMP effect. Possible mechanisms of cAMP action on the transhydrogenase activity and the significance of this regulation for mitochondrial energetics are discussed.  相似文献   

17.
A single injection of dibutyryl cyclic AMP (Bt2cAMP) into adrenalectomized rats results in rapid and proportionate increases in hepatic tyrosine aminotransferase catalytic activity and in the amount of functional mRNA coding for this enzyme. This effect is transient in that mRNATAT peaks at 0.065% of total poly(A)+RNA activity at 1 h and is back to the basal level of 0.012% in 2.5 h. Enzyme activity peaks at 2.5 h and is back to the basal level by 5 h. If Bt2cAMP is repeatedly injected (0, 1, 2.5, and 4 h), enzyme activity remains at maximal levels for 4 to 5 h, whereas changes in mRNATAT activity are identical with those observed in the single injected rats. The rate of tyrosine aminotransferase synthesis at 5.5 h in the multiply injected rats, a time when mRNATAT has already returned to the basal level, is 3 to 4 times greater than that in either control or singly injected rats at the same time (0.3% of total protein versus 0.07%) and is equivalent to the maximal rate seen 1 h after the initial injection of the cyclic nucleotide. Since the rate of synthesis is increased in proportion to the increase in enzyme catalytic activity, stabilization of the enzyme against degradation is excluded as an induction mechanism at this late time point. These responses are not due to differences in the metabolism of Bt2cAMP, and the effect depends on the presence of metabolically active derivatives of this nucleotide. It thus appears that Bt2cAMP induces the synthesis of tyrosine aminotransferase in rat liver in two distinct ways. One is pretranslational and involves a transient and rapid increase in mRNATAT activity. The second appears to involve a delayed but sustained increase in translation of a basal level of mRNATAT.  相似文献   

18.
Taurine produced no effect on the cyclic nucleotides level in the heart of intact rats but sharply inhibited the cAMP and cGMP level elevation in the rat heart occuring in stress. After atropine pretreatment of the animals no effect of taurine on the heart cGMP level was observed; its effect on the cAMP level was significantly inhibited against the background of partial beta-adrenoreceptors block. It is suggested that taurine is a nonspecific regulator of the myocardial cells sensitivity to the biologically active drugs.  相似文献   

19.
E G Beale  C S Katzen  D K Granner 《Biochemistry》1981,20(17):4878-4883
N6,O2'-Dibutyryladenosine 3',5'-phosphate (Bt2cAMP) induces the synthesis of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.32), in rat liver by increasing the activity of messenger ribonucleic acid (mRNA) coding for this enzyme (mRNAPEPCK) more than 20-fold (from less than 0.01% to greater than 0.20% of total mRNA activity) as determined by using in vitro translation systems which measure only active mRNAPEPCK. The increase in mRNAPEPCK activity could result from increased synthesis, increased processing, or decreased inactivation rates. Actinomycin D and cordycepin inhibit mRNAPEPCK induction by 89% and 70%, respectively, a result that indicates a requirement for ongoing RNA synthesis but that does not distinguish which of these steps is regulated by cAMP. We have employed a kinetic approach, not involving RNA synthesis inhibitors, to determine the half-life of mRNAPEPCK both during a period of deinduction following glucose feeding and during a subsequent induction by Bt2cAMP. An estimated half-life of 20 +/-5 min during both of these periods indicates that Bt2cAMP has no effect on the rate of inactivation of mRNAPEPCK. We conclude that Bt2cAMP effects the increase in activity of mRNAPEPCK by promoting its synthesis or processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号