首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study investigated the interactions among the complement membrane attack complex (MAC), CCL2, and VEGF that occur in vivo during the development of choroidal neovascularization (CNV). We first investigated the sequential expression of MAC, CCL2, and VEGF during laser-induced CNV in C57BL/6 mice. Increased MAC deposition was detected at 1 h, CCL2 increased at 3 h, and VEGF was up-regulated at day 3 post-laser treatment. These results suggested that during laser-induced CNV, MAC, CCL2 and VEGF are formed and/or expressed in the following order: MAC → CCL2 → VEGF. To determine the cross-talk between MAC, CCL2, and VEGF during laser-induced CNV, neutralizing antibodies were injected both systemically and locally to block the bioactivity of each molecule. Blocking MAC formation inhibited CCL2 and VEGF expression and also limited CNV formation, whereas neutralization of CCL2 bioactivity did not affect MAC deposition; however, it reduced VEGF expression and CNV formation. When bioactivity of VEGF was blocked, CNV formation was significantly inhibited, but MAC deposition was not affected. Together, our results demonstrate that MAC is an upstream mediator and effect of MAC on the development of laser-induced CNV can be attributed to its direct effect on VEGF as well as its effect on VEGF that is mediated by CCL2. Understanding the interplay between immune mediators is critical to gain insight into the pathogenesis of CNV.  相似文献   

2.
Fluid-phase assembly of the membrane attack complex of complement   总被引:1,自引:0,他引:1  
The dynamics and protein stoichiometry of the fluid-phase assembly of the membrane attack complex of complement were characterized by using light-scattering intensity measurements. The assembly proceeded in an ordered manner with generation of stable and highly reproducible intermediates. In the absence of phospholipid or C8, mixtures of C5b-6 and C7 self-associated to fluid phase-C5b-7 which had a weight-average molecular weight of (4.1 +/- 0.2) X 10(6). This corresponded to an average of nine C5b-7 complexes per particle. The particles appeared heterodisperse on sucrose gradients with S20,W values ranging from 21 to 39 S. Addition of C8 and C9 caused no further aggregation or disassembly of the particles. When excess C8 was added to the aggregated C5b-7, the ratio of C8 incorporated per C5b-7 moiety was 0.98 +/- 0.03. At saturating levels of C9, the C9/C5b-8 ratio in the particles was 7.2 +/- 0.6. Incorporation of C8 caused a small increase in the Z-averaged particle diffusion coefficient [(9.9-10.3) X 10(-8) cm2/s], indicating that it added in a manner that "filled in the gaps" in the C5b-7 particles. C9 caused only small decreases in the particle diffusion coefficient and substantially decreased the f/fmin ratio. The time course for C9 incorporation into fluid phase-C5b-8 indicated an initial rapid phase followed by a slow phase. The rapid phase corresponded to the incorporation of about one C9 for every two C5b-8 complexes. This suggested that one C9 binding site was accessible on about half of the C5b-8 complexes. This may imply that only about half of the C5b-8 complexes were capable of C9 polymerization so that the ratio of C9 incorporated per functional C5b-8 was (14 +/- 2)/1. The initial velocity of the slow phase of C9 addition gave an activation energy of 37 kcal/mol. The activation energy for C5b-8-independent polymerization of C9 had a similar value of 41 kcal/mol. Light-scattering intensity measurements seemed to be a highly reliable method for quantitative characterization of the fluid-phase assembly.  相似文献   

3.
4.
PRELP is a 58-kDa proteoglycan found in a variety of extracellular matrices, including cartilage and at several basement membranes. In rheumatoid arthritis (RA), the cartilage tissue is destroyed and fragmented molecules, including PRELP, are released into the synovial fluid where they may interact with components of the complement system. In a previous study, PRELP was found to interact with the complement inhibitor C4b-binding protein, which was suggested to locally down-regulate complement activation in joints during RA. Here we show that PRELP directly inhibits all pathways of complement by binding C9 and thereby prevents the formation of the membrane attack complex (MAC). PRELP does not interfere with the interaction between C9 and already formed C5b-8, but inhibits C9 polymerization thereby preventing formation of the lytic pore. The alternative pathway is moreover inhibited already at the level of C3-convertase formation due to an interaction between PRELP and C3. This suggests that PRELP may down-regulate complement attack at basement membranes and on damaged cartilage and therefore limit pathological complement activation in inflammatory disease such as RA. The net outcome of PRELP-mediated complement inhibition will highly depend on the local concentration of other complement modulating molecules as well as on the local concentration of available complement proteins.  相似文献   

5.
In addition to their well-recognized role in immune defense, there is a growing recognition that the proteins of the complement system impact directly on vascular homeostatic mechanisms, evoking cellular responses that serve to both promote adherence of blood cells to the walls of blood vessels, and the formation of fibrin through the enzyme mechanisms of the coagulation system. This clot-promoting or ‘procoagulant’ activity initiated through the complement system entails both receptor-mediated as well as receptor-independent pathways of cell activation. In this review, I will focus specifically upon the role that is now thought to be played by the membrane attack complex of the complement system (MAC) in the induction of the procoagulant properties of human platelets and endothelium.  相似文献   

6.
7.
The effect of a synthetic cyclic disulfide compound, SA3443, on neovascularization was investigated. In vitro, enzyme-linked immunosorbent assay and RT-PCR demonstrated that SA3443 suppressed the expression of the hypoxia-induced vascular endothelial growth factor (VEGF) at both protein and mRNA levels in ARPE-19 cells. In vivo, the administration of SA3443 to mice with laser-induced choroidal neovascularization (CNV) suppressed the leakage from the lesions and reduced their size. Furthermore, the expression level of VEGF protein was significantly reduced by the administration of SA3443. Taken together, our results demonstrate that SA3443 suppresses VEGF production and reduces vascular leakage and the growth of mouse experimental CNV.  相似文献   

8.
Nucleated cells can resist lysis by and recover from complement attack even after formation of the potentially cytolytic membrane attack complex on the cell surface. We have found that human neutrophils resist complement lysis by the physical removal of membrane attack complexes by both endocytic and exocytic process. The latter mechanism predominates, vesiculation being detectable within 60 sec of initiating the complement cascade. Sixty-five percent of the formed complexes are removed on plasma membrane vesicles, although only 2% of the cell surface is lost. Ultrastructural examination revealed that these vesicles were covered with ring-like "classical" complement lesions. Analysis of these vesicles by gel electrophoresis indicated that C9 was present exclusively in the form of a sodium dodecyl sulfate-resistant, high m.w. complex. In contrast, the 35% of C9 that remained associated with the cells was found to be inaccessible to a C9-specific monoclonal antibody, and was partly degraded, suggesting internalization of the membrane attack complex and proteolysis of some C9 molecules. The molar ratio of C9 to C8 was 12 to 1 on shed vesicles and on recovered cells.  相似文献   

9.
Light-scattering intensity was shown to be a reliable, direct, and quantitative technique for monitoring the assembly of the membrane attack complex of complement (proteins C5b-6, C7, C8, and C9) on small unilamellar phosphatidylcholine vesicles. The assembly on vesicles occurred in a simple fashion; complexes of C5b-7 bound noncooperatively to the vesicles, and final assembly of C5b-9 did not induce vesicle aggregation or fragmentation. When C5b-6 and C7 were mixed in the presence of vesicles but at molar protein/vesicle ratios of less than 1, there was quantitative binding of C5b-7 to the vesicles with no concomitant aggregation of C5b-7. If C7 was added at a slower rate, quantitative binding was obtained at molar C5b-7/vesicle ratios of up to 5. The latter observations (a) were consistent with the proposal that C5b-7 aggregation and membrane binding were competitive events and (b) defined conditions under which light-scattering intensity measurements could monitor C5b-9 assembly on vesicles without contribution from the fluid-phase assembly. The C8/C5b-7 ratio in the phospholipid-C5b-8 complex was 0.97 +/- 0.12, and the maximum ratio of C9/C5b-8 in the final complex was 16.2 +/- 2.0. One C9 molecule associated rapidly with each phospholipid-C5b-8, followed by slower incorporation of the remaining C9 molecules. The initial velocity of the slow phase of C9 addition was easily saturated with C9 and gave an activation energy of 37 kcal/mol. This was identical with the value measured for the analogous process in the fluid-phase assembly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of sequential additions of purified human complement proteins C5b-6, C7, C8, and C9 to assemble the C5b-9 membrane attack complex (MAC) of complement on electrical properties of planar lipid bilayers have been analyzed. The high resistance state of such membranes was impaired after assembly of large numbers of C5b-8 complexes as indicated by the appearance of rapidly fluctuating membrane currents. The C5b-8 induced conductance was voltage dependent and rectifying at higher voltages. Addition of C9 to membranes with very few C5b-8 complexes caused appearance of few discrete single channels of low conductance (5-25 pS) but after some time very large (greater than 0.5 nS) jumps in conductance could be monitored. This high macroscopic conductance state was dominated by 125-pS channels having a lifetime of approximately 1 s. The high conductance state was not stable and declined again after a period of 1-3 h. Incorporation of MAC extracted from complement-lysed erythrocytes into liposomes and subsequent transformation of such complexes into planar bilayers via an intermediate monolayer state resulted in channels with characteristics similar to the ones produced by sequential assembly of C5b-9. Comparison of the high-conductance C5b-9 channel characteristics (lifetime, ion preference, ionic-strength dependence) with those produced by poly(C9) (the circular or tubular aggregation product of C9) as published by Young, J.D.-E., Z.A. Cohn, and E.R. Podack. (1986. Science [Wash. DC]. 233:184-190.) indicates that the two are significantly different.  相似文献   

11.
Treatment of cultured renal glomerular mesangial cells (MC) with nonlytic concentrations of the purified components (C5b-9) of the terminal membrane attack complex (MAC) of complement induced significant functional alterations characteristic of cellular activation. C5b-9-treated MC released large quantities of primarily vasodilatory prostaglandins. In addition, the secretion of an MC-derived auto-growth factor (MC interleukin 1) was greatly enhanced. Examination of the action of C5b-9 on MC phospholipid metabolism indicated that complement induced the activation of phospholipases, leading to quantitative changes in the fatty acid profile of MC membrane phospholipids. These findings demonstrate that cultured MC are highly responsive to nonlytic concentrations of the C5b-9 complex, and suggest that the mesangial deposition of the MAC in many forms of glomerular disease, with resultant cellular activation, may play a major role in the hemodynamic and cellular proliferative events characteristic of these disorders.  相似文献   

12.
The relative inflammatory roles ofneutrophils, selectins, and terminal complement components areinvestigated in this study of skeletal muscle reperfusion injury. Miceunderwent 2 h of hindlimb ischemia followed by 3 h ofreperfusion. The role of neutrophils was defined by immunodepletion,which reduced injury by 38%, as did anti-selectin therapy withrecombinant soluble P-selectin glycoprotein ligand-immunoglobulin (Ig)fusion protein. Injury in C5-deficient and soluble complement receptortype 1-treated wild-type mice was 48% less than that of untreatedwild-type animals. Injury was restored in C5-deficient micereconstituted with wild-type serum, indicating the effector role ofC5-9. Neutropenic C5-deficient animals showed additive reductionin injuries (71%), which was lower than C5-deficientneutrophil-replete mice, indicating neutrophil activity withoutC5a. Hindlimb histological injury was worse in ischemicwild-type and C5-deficient animals reconstituted with wild-type serum.In conclusion, the membrane attack complex and neutrophils actadditively to mediate skeletal muscle reperfusion injury. Neutrophilactivity is independent of C5a but is dependent on selectin-mediated adhesion.

  相似文献   

13.
Neoantigenic determinants (neoAg) specific for the assembling membrane attack complex (MAC) of complement were detected by immunofluorescence microscopy on the surface of cytotoxic lymphocytes during the antibody-dependent cellular cytotoxicity (ADCC) reaction. This study employed antibody-sensitized chicken erythrocytes as target cells, human peripheral blood lymphocytes as effector cells, and RITC-conjugated rabbit F(ab')2-anti-neoAg. NeoAg was present on 60% of ADCC plaque-forming lymphocytes (PFL). Eight out of 182 neoAg-positive PFL were observed in direct contact with their target cells. In these cases MAC-specific neoAg was visualized at the zone of contact between the cells. Anti-neoAg Ig was found to inhibit ADCC plaque assays up to 62%; and 51Cr-release assays up to 79%. Stimulation of lymphocytes by PHA or mixed lymphocyte culture increased the expression of neoAg. In the case of PHA, increased neoAg expression was correlated with an increased incorporation of 14C-leucine into C5, C6, C7, and C8 antigens, which was detected by immunodiffusion and autoradiography.  相似文献   

14.
Choroidal neovascularization (CNV), a characteristic of age-related macular degeneration, is an underlying cause of severe vision loss among elderly patients. Fibroblast growth factor (FGF) is suggested to exert an important role in the pathogenesis of CNV. However, the molecular mechanisms governing this event are not fully elucidated. Herein, we identified the potential role of FGF7 in CNV. To examine the roles of FGF7 in the progression of CNV, rat CNV models were established and treated with small interfering RNA (siRNA) against FGF7 or FGF7 overexpression, followed by identification of expression of FGF7 in the CNV modeled rats. Next, proliferation and migration, and in vitro tube formation of human umbilical vein endothelial cells, as well as expression of vascular endothelial growth factor (VEGF) and transforming growth factor-beta 2 (TGF-β2) were evaluated. CNV led to upregulated FGF7 expression. Cells in the presence of FGF7 siRNA showed suppressed proliferation, migration, and tube formation, along with downregulated VEGF and TGF-β2 expression. Taken together, functional suppression of FGF7 inhibited the onset of CNV, ultimately highlighting a novel therapeutic target for suppressing CNV progression.  相似文献   

15.
16.
Retinal and choroidal neovascularization   总被引:20,自引:0,他引:20  
The unique vascular supply of the retina, the ability to visualize the vasculature in vivo, and the ability to selectively express genes in the retina make the retina an ideal model system to study molecular mechanisms of angiogenesis. In addition, this area of investigation has great clinical significance, because retinal and choroidal neovascularization are the most common causes of severe visual loss in developed countries and new treatments are needed. As a result, interest in ocular neovascularization is rapidly growing and there has been considerable recent progress. Use of genetically engineered mice in recently developed murine models provides a means to investigate the role of individual gene products in neovascularization in two distinct vascular beds, the retinal vasculature and the choroidal vasculature. It appears that angiogenesis in different vascular beds has common themes, but also has tissue-specific aspects. This review summarizes recent progress in the field of ocular neovascularization and the prospects that it provides for the development of new treatments.  相似文献   

17.
P Amiguet  J Brunner  J Tschopp 《Biochemistry》1985,24(25):7328-7334
The membrane-restricted photoactivatable carbene generator 3-(trifluoromethyl)-3-(m-[125I]-iodophenyl)diazirine [Brunner, J., & Semenza, G. (1981) Biochemistry 20, 7174-7182] was used to label the subunits of the membrane attack complex of complement (C5b-9). C5b-9 complexes either were assembled from serum on erythrocyte membranes or were reconstituted from purified components on liposomes. After irradiation, most of the probe is bound to C9 independent of the membrane system used, indicating that the wall of the transmembrane channel is predominantly composed of C9. No difference was observed whether polymerized C9 was in the tubular or nontubular form [Podack, E. R., & Tschopp, J. (1983) J. Biol. Chem. 257, 15204-15212], showing that tubule closure is not essential for successful lipid insertion. The same label distribution between the two forms of polymerized C9 was obtained by analyzing zinc-polymerized C9 in the absence of C5b-8. Since the photoreactive probe reacted with at least two distinct polypeptide segments within C9, lipid interaction does not occur via a single segment of hydrophobic amino acids.  相似文献   

18.
Kaliappan S  Jha P  Lyzogubov VV  Tytarenko RG  Bora NS  Bora PS 《FEBS letters》2008,582(23-24):3451-3458
The objective of the present study was to investigate the effect of alcohol and nicotine consumption on the pathogenesis of choroidal neovascularization (CNV) in rats after laser-photocoagulation. Confocal microscopic analysis demonstrated an increase in CNV complex size in rats fed with alcohol (2.3-fold), nicotine (1.9-fold), and the combination of alcohol and nicotine (2.7-fold) compared with the control groups. Immunohistochemical analysis revealed that alcohol and nicotine consumption increased MAC deposition and VEGF expression in laser spots. Expression of CD59 by RT-PCR and Western blot was drastically reduced in the animals that were fed with alcohol, nicotine and alcohol and nicotine compared to those fed with water alone and this was associated with exacerbation of CNV.  相似文献   

19.
Polymerization of C9 occurs spontaneously or can be induced by the tetramolecular complex C5b-8. Spontaneous C9 (0.15 mg/ml) polymerization required more than 3 days at 37 degrees C. In the presence of C5b-8, C9 polymerization was complete within 10 min. The molar C9:C5b-8 ratio determined the extent of tubular poly C9 formation by C5b-8-bearing phospholipid vesicles. When this ratio was 9:1 or 12:1, 72% of complex-bound C9 was present as SDS resistant tubular poly C9 (Mr = 1.1 X 10(6]. At lower C9:C5b-8 ratios, poly C9 was bound primarily in nontubular form. Tubular poly C9, as part of C5b-9, could also be generated on rabbit erythrocytes by using whole human serum as a complement source. At limiting serum concentration (molar C9 to C8 ratio approximately 2), no SDS-resistant tubular poly C9 was detected. At high serum concentration or when using serum that was supplemented with C9, up to 40% of the C9 was SDS-resistant tubular poly C9, and the rest was poly C9, which was incompletely polymerized. It is suggested that the C5b-8 complex acts as an accelerator of C9 polymerization, and that its relative concentration to C9 determines the ultrastructure of the C5b-9 complex.  相似文献   

20.
Complement is implicated in pathology in the human demyelinating disease multiple sclerosis and in animal models that mimic the demyelination seen in multiple sclerosis. However, the components of the complement system responsible for demyelination in vivo remain unidentified. In this study, we show that C6-deficient (C6-) PVG/c rats, unable to form the membrane attack complex (MAC), exhibit no demyelination and significantly reduced clinical score in the Ab-mediated experimental autoimmune encephalomyelitis model when compared with matched C6-sufficient (C6+) rats. In C6+ rats, perivenous demyelination appeared, accompanied by abundant mononuclear cell infiltration and axonal injury. Neither demyelination nor axonal damage was seen in C6- rats, whereas levels of mononuclear cell infiltration were equivalent to those seen in C6+ rats. Reconstitution of C6 to C6- rats yielded pathology and clinical disease indistinguishable from that in C6+ rats. We conclude that demyelination and axonal damage occur in the presence of Ab and require activation of the entire complement cascade, including MAC deposition. In the absence of MAC deposition, complement activation leading to opsonization and generation of the anaphylatoxins C5a and C3a is insufficient to initiate demyelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号