首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
烟碱样乙酰胆碱受体(AChR)是一种配基门控性离子通道,由5个亚单位(α_2βγα)构成。利用非洲蟾蜍卵母细胞的表达系统可以研究AChR的通道特性和各亚单位所起的作用。电鳗电器官AChR和小牛肌AChR之间门控特性的差别,主要是由δ亚单位决定的;而小牛肌成年型AChR与胚胎型AChR之间的差别,则由ε亚单位决定。  相似文献   

2.
The nicotinic acetylcholine receptor and its ion channel   总被引:9,自引:0,他引:9  
  相似文献   

3.
Previous studies have established the presence of overlapping binding sites for the noncompetitive antagonists (NCAs) amobarbital, tetracaine, and 3-trifluoromethyl-3-(m-[(125)I]iodophenyl) diazirine ([(125)I]TID) within the ion channel of the Torpedo nicotinic acetylcholine receptor (AChR) in the resting state. These well-characterized NCAs and competitive radioligand binding and photolabeling experiments were employed to better characterize the interaction of the dissociative anesthetics ketamine and thienylcycloexylpiperidine (TCP) with the resting AChR. Our experiments yielded what appear to be conflicting results: (i) both ketamine and TCP potentiated [(125)I]TID photoincorporation into AChR subunits; and (ii) ketamine and TCP had very little effect on [(14)C]amobarbital binding. Nevertheless, (iii) both ketamine and TCP completely displaced [(3)H]tetracaine binding (K(i)s approximately 20.9 and 2.0 microM, respectively) by a mutually exclusive mechanism. To reconcile these results we propose that, in the resting ion channel, TCP and ketamine bind to a site that is spatially distinct from the TID and barbiturate locus, while tetracaine bridges both binding sites.  相似文献   

4.
The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-α-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.  相似文献   

5.
To map the structure of a ligand-gated ion channel, we used the photolabile polyamine-containing toxin MR44 as photoaffinity label. MR44 binds with high affinity to the nicotinic acetylcholine receptor in its closed channel conformation. The binding stoichiometry was two molecules of MR44 per receptor monomer. Upon UV irradiation of the receptor-ligand complex, (125)I-MR44 was incorporated into the receptor alpha-subunit. From proteolytic mapping studies, we conclude that the site of (125)I-MR44 cross-linking is contained in the sequence alpha His-186 to alpha Leu-199, which is part of the extracellular domain of the receptor. This sequence partially overlaps in its C-terminal region with one of the three loops that form the agonist-binding site. The agonist carbachol and the competitive antagonist alpha-bungarotoxin had only minor influence on the photocross-linking of (125)I-MR44. The site where the hydrophobic head group of (125)I-MR44 binds must therefore be located outside the zone that is sterically influenced by agonist bound at the nicotinic acetylcholine receptor. In binding and photocross-linking experiments, the luminal noncompetitive inhibitors ethidium and triphenylmethylphosphonium were found to compete with (125)I-MR44. We conclude that the polyamine moiety of (125)I-MR44 interacts with the high affinity noncompetitive inhibitor site deep in the channel of the nicotinic acetylcholine receptor, while the aromatic ring of this compound binds in the upper part of the ion channel (i.e. in the vestibule) to a hydrophobic region on the alpha-subunit that is located in close proximity to the agonist binding site. The region of the alpha-subunit labeled by (125)I-MR44 should therefore be accessible from the luminal side of the vestibule.  相似文献   

6.
Evidence from electrophysiology and biochemistry supports the hypothesis that the ion channel of the nicotinic acetylcholine receptor is formed by homologous amino acid sequences of all receptor subunits, called helices M2. A model of the ion channel is proposed and the selectivity filter is described as a ring of negatively-charged amino acid side chains [(1988) Nature 335, 645-648] which may undergo conformational changes upon permeation of the cation.  相似文献   

7.
We used a series of adamantane derivatives to probe the structure of the phencyclidine locus in either the resting or desensitized state of the nicotinic acetylcholine receptor (AChR). Competitive radioligand binding and photolabeling experiments using well-characterized noncompetitive antagonists such as the phencyclidine analogue [piperidyl-3,4-(3)H(N)]-N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([(3)H]TCP), [(3)H]ethidium, [(3)H]tetracaine, [(14)C]amobarbital, and 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) were performed. Thermodynamic and structure-function relationship analyses yielded the following results. (1) There is a good structure-function relationship for adamantane amino derivatives inhibiting [(3)H]TCP or [(3)H]tetracaine binding to the resting AChR. (2) Since the same derivatives inhibit neither [(14)C]amobarbital binding nor [(125)I]TID photoincorporation, we conclude that these positively charged molecules preferably bind to the TCP locus, perhaps interacting with alphaGlu(262) residues at position M2-20. (3) The opposite is true for the neutral molecule adamantane, which prefers the TID (or barbiturate) locus instead of the TCP site. (4) The TID site is smaller and more hydrophobic (it accommodates neutral molecules with a maximal volume of 333 +/- 45 A(3)) than the TCP locus, which has room for positively charged molecules with volumes as large as 461 A(3) (e.g., crystal violet). This supports the concept that the resting ion channel is tapering from the extracellular mouth to the middle portion. (5) Finally, although both the hydrophobic environment and the size of the TCP site are practically the same in both states, there is a more obvious cutoff in the desensitized state than in the resting state, suggesting that the desensitization process constrains the TCP locus. A plausible location of neutral and charged adamantane derivatives is shown in a model of the resting ion channel.  相似文献   

8.
Binding of agonists to the nicotinic acetylcholine receptor induces a conformational change by which the integral cation channel is opened. The analysis of this mechanism is commonly based on models which may be classified as either occupational or conformational. Here I summarize results showing that none of these concepts alone is capable of accommodating all experimental observations. A new integrated model based on earlier concepts and the molecular structure of this macromolecule can explain the experiments.  相似文献   

9.
A binding site for the channel-blocking noncompetitive antagonist [3H]triphenylmethylphosphonium ([3H]TPMP+) was localized in the alpha-, beta- and delta-chains of the nicotinic acetylcholine receptor (AChR) from Torpedo marmorata electric tissue. The photolabel was found in homologous positions of the highly conserved sequence helix II, alpha 248, beta 254, and delta 262. The site of the photoreaction appears to not be affected by the functional state of the receptor. [3H]TPMP+ was found in position delta 262 independent of whether photolabeling was performed with the receptor in its resting, desensitized or antagonist state. A model of the AChR ion channel is proposed, according to which the channel is formed by the five helices II contributed by the five receptor subunits.  相似文献   

10.
11.
Interactions of the synthetic pyrethroid allethrin with the nicotinic acetylcholine (ACh) receptor/channel were studied in membranes from Torpedo electric organ. Allethrin did not inhibit binding of [3H]ACh to the receptor sites, but inhibited noncompetitively binding of [3H]perhydrohistrionicotoxin ([3H]H12-HTX) to the ionic channel sites in a dose-dependent manner. The inhibition constant (Ki) of [3H]H12-HTX binding in absence of receptor agonist was 30 micro M, while in presence of 100 micro M carbamylcholine it was 4 micro M. This inhibitory effect of allethrin had a negative temperature coefficient. The high affinity binding of allethrin to the channel sites of the nicotinic ACh-receptor may be indicative of a postsynaptic site of action for pyrethroids, in addition to their known action on the sodium channel.  相似文献   

12.
The patch clamp K+-conductance G of the nicotinic acetylcholine receptor (AcChoR) dimer (Mr≈ 590 000) of Torpedo californica, reconstituted in lipid vesicles, which decreases with increasing Ca2+-concentration in the range 0.1≤[Ca2+]/mM≤2, can be quantitatively rationalized by Ca2+-binding to negatively charged sites, causing charge reversal reducing the normal K+-accumulation in the channel vestibules. Cleavage of the sialic acid residues (up to 20±2 per dimer) reduces the K+-accumulation factor α = G0/G from α = 3±0.8 of the normal AcChoR to α = 2±0.7 for the desialyated AcChoR. Desialysation also decreases the Ca2+-sensitivity of the conductance from G0 = 96.6±6 pS at [Ca2+]→0 of the normal AcChoR to G0 = 84.2±6 pS. Endogenous hyperphosphorylation (to up to 28±4 phosphates per dimer) enhances the vestibular K+-accumulation to α = 3.6±0.7, without affecting the Ca2+-dissociation equilibrium constant KCa = 0.34± 0.05 mM at 295 K (22 °C). Most interestingly, even in the absence of AcCho, the hyperphosphorylated AcChoR dimer exhibits spontaneously long-lasting open channel events (τ = 200±50 ms). At [AcCho] = 2 μM there are two open states (τ 1 = 20±10 ms, τ 2 = 140±60 ms) whereas the normal AcChoR dimer has only one open state (τ = 6±4 ms). – Physiologically important is that (i) the sialic acid and phosphate residues render the AcChoR conductance sensitive to control by divalent ions and (ii) the channel behavior of the hyperphosphorylated AcChoR without AcCho appears to indicate pathophysiologically high phosphorylation activity of the cell leading, among others, to myasthenic syndromes. Received: 10 November 1997 / Revised version: 12 January 1998 / Accepted: 7 March 1998  相似文献   

13.
5-HT3A receptors select among permeant ions based on size and charge. The membrane-associated (MA) helix lines the portals into the channel’s cytoplasmic vestibule in the 4-Å resolution structure of the homologous acetylcholine receptor. 5-HT3A MA helix residues are important determinants of single-channel conductance. It is unknown whether the portals into the cytoplasmic vestibule also determine the size selectivity of permeant ions. We sought to determine whether the portals form the size selectivity filter. Recently, we showed that channels functioned when the entire 5-HT3A M3–M4 loop was replaced by the heptapeptide M3–M4 loop sequence from GLIC, a bacterial Cys-loop neurotransmitter gated ion channel homologue from Gloebacter violaceus. We used homomeric 5-HT3A receptors with either a wild-type (WT) M3–M4 loop or the chimeric heptapeptide (5-HT3A–glvM3M4) loop, i.e., with or without portals. In Na+-containing buffer, the WT receptor current–voltage relationship was inwardly rectifying. In contrast, the 5-HT3A–glvM3M4 construct had a negative slope conductance region at voltages less than −80 mV. Glutamine substitution for the heptapeptide M3–M4 loop arginine eliminated the negative slope conductance region. We measured the relative permeabilities and conductances of a series of inorganic and organic cations ranging from 0.9 to 4.5 Å in radius (Li+, Na+, ammonium, methylammonium, ethanolammonium, 2-methylethanolammonium, dimethylammonium, diethanolammonium, tetramethylammonium, choline, tris [hydroxymethyl] aminomethane, and N-methyl-d-glucamine). Both constructs had measurable conductances with Li+, ammonium, and methylammonium (size range of 0.9–1.8-Å radius). Many of the organic cations >2.4 Å acted as competitive antagonists complicating measurement of conductance ratios. Analysis of the permeability ratios by excluded volume theory indicates that the minimal pore radius for 5-HT3A and 5-HT3–glvM3M4 receptors was similar, ∼5 Å. We infer that the 5-HT3A size selectivity filter is located in the transmembrane channel and not in the portals into the cytoplasmic vestibule. Thus, the determinants of size selectivity and conductance are located in physically distinct regions of the channel protein.  相似文献   

14.
The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process and provide a new insight into the gating mechanism of nAChR at the atomic level.  相似文献   

15.
16.
1. Loss of response after prolonged or repeated application of stimulus is generally termed desensitization. A wide variety of phenomena occurring in living organisms falls under this general definition of desensitization. There are two main types of desensitization processes: specific and non-specific. 2. Desensitization of the nicotinic acetylcholine receptor is triggered by prolonged or repeated exposure to agonists and results in inactivation of its ion channel. It is a case of specific desensitization and is an intrinsic molecular property of the receptor. 3. Desensitization of the nicotinic acetylcholine receptor at the neuromuscular junction was first reported by Katz and Thesleff in 1957. Desensitization of the receptor has been demonstrated by rapid kinetic techniques and also by the characteristic "burst kinetics" obtained from single-channel recordings of receptor activity in native as well as in reconstituted membranes. In spite of a number of studies, the detailed molecular mechanism of the nicotinic acetylcholine receptor desensitization is not known with certainty. The progress of desensitization is accompanied by an increase in affinity of the receptor for its agonist. This change in affinity is attributed to a conformational change of the receptor, as detected by spectroscopic and kinetic studies. A four-state general model is consistent with the major experimental observations. 4. Desensitization of the nicotinic acetylcholine receptor can be potentially modulated by exogenous and endogenous substances and by covalent modifications of the receptor structure. Modulators include the noncompetitive blockers, calcium, the thymic hormone peptides (thymopoietin and thymopentin), substance P, the calcitonin gene-related peptide, and receptor phosphorylation. Phosphorylation is an important posttranslational covalent modification that is correlated with the regulation and desensitization of the receptor through various protein kinases. 5. Although the physiological significance of desensitization of the nicotinic receptor is not yet fully understood, desensitization of receptors probably plays a significant role in the operation of the neuronal networks associated in memory and learning processes. Desensitization of the nicotinic receptor could also possibly be related to the neuromuscular disease, myasthenia gravis.  相似文献   

17.
The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.  相似文献   

18.
Activation of a nicotinic acetylcholine receptor.   总被引:7,自引:2,他引:7       下载免费PDF全文
We studied activation of the nicotinic acetylcholine (ACh) receptor on cells of a mouse clonal muscle cell line (BC3H1). We analyzed single-channel currents through outside-out patches elicited with various concentrations of acetylcholine (ACh), carbamylcholine (Carb) and suberyldicholine (Sub). Our goal is to determine a likely reaction scheme for receptor activation by agonist and to determine values of rate constants for transitions in that scheme. Over a wide range of agonist concentrations the open-time duration histograms are not described by single exponential functions, but are well-described by the sum of two exponentials, a brief-duration and a long-duration component. At high concentration, channel openings occur in groups and these groups contain an excess number of brief openings. We conclude that there are two open states of the ACh receptor with different mean open times and that a single receptor may open to either open state. The concentration dependence of the numbers of brief and long openings indicates that brief openings do not result from the opening of channels of receptors which have only one agonist molecule bound to them. Closed-time duration histograms exhibit a major brief component at low concentrations. We have used the method proposed by Colquhoun and Sakmann (1981) to analyze these brief closings and to extract estimates for the rates of channel opening (beta) and agonist dissociation (k-2). We find that this estimate of beta does not predict our closed-time histograms at high agonist concentration (ACh: 30-300 microM; Carb: 300-1,000 microM). We conclude that brief closings at low agonist concentrations do not result solely from transitions between the doubly-liganded open and the doubly-liganded closed states. Instead, we postulate the existence of a second closed-channel state coupled to the open state.  相似文献   

19.
The effects on the protein structure produced by binding of cholinergic agonists to purified acetylcholine receptor (AcChR) reconstituted into lipid vesicles, has been studied by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Spectral changes in the conformationally sensitive amide I infrared band indicates that the exposure of the AcChR to the agonist carbamylcholine, under conditions which drive the AcChR into the desensitized state, produces alterations in the protein secondary structure. Quantitative estimation of these agonist-induced alterations by band-fitting analysis of the amide I spectral band reveals no appreciable changes in the percent of alpha-helix, but a decrease in beta-sheet structure, concomitant with an increase in less ordered structures. Additionally, agonist binding results in a concentration-dependent increase in the protein thermal stability, as indicated by the temperature dependence of the protein infrared spectrum and by calorimetric analysis, which further suggest that AcChR desensitization induced by the cholinergic agonist implies significant rearrangements in the protein structure.  相似文献   

20.
3-Trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) has been shown to be a potent noncompetitive antagonist (NCA) of the nicotinic acetylcholine receptor (AChR). Amino acids that contribute to the binding site for [(125)I]TID in the ion channel have been identified in both the resting and desensitized state of the AChR (White, B.H., and Cohen, J.B. (1992) J. Biol. Chem. 267, 15770-15783). To characterize further the structure of the NCA-binding site in the resting state channel, we have employed structural analogs of TID. The TID analogs were assessed by the following: 1) their ability to inhibit [(125)I]TID photoincorporation into the resting state channel; 2) the pattern, agonist sensitivity, and NCA inhibition of [(125)I]TID analog photoincorporation into AChR subunits. The addition of a primary alcohol group to TID has no demonstrable effect on the interaction of the compound with the resting state channel. However, conversion of the alcohol function to acetate, isobutyl acetate (TIDBIBA), or to trimethyl acetate leads to rightward shifts in the concentration-response curves for inhibition of [(125)I]TID photoincorporation into the AChR channel and a progressive reduction in the agonist sensitivity of [(125)I]TID analog photoincorporation into AChR subunits. Inhibition of [(125)I]TID analog photoincorporation by NCAs (e.g. tetracaine) as well as identification of the sites of [(125)I]TIDBIBA photoincorporation in the deltaM2 segment indicate a common binding locus for each TID analog. We conclude that relatively small additions to TID progressively reduce its ability to interact with the NCA site in the resting state channel. A model of the NCA site and resting state channel is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号