首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During mammalian spermatogenesis, many specific molecules show the dynamics of expression and elimination, corresponding with the morphological differentiation of germ cells. We have isolated a novel cDNA designated F77 from mouse testis by cDNA subtractive hybridization between normal and sterile mice, using the C57BL/6 congenic strain for the hybrid sterilityhyphen;3 lpar;Hsthyphen;3rpar; allele from Mus spretus. The full-length F77 mRNA was 3.4 kb and showed significant nonmatching with entries in the databases. F77 was mapped at a proximal position between D8Mit212 and D8Mit138 on mouse chromosome 8, in which no corresponding genes related to its nucleotide sequence were found. F77 mRNA was not detected in any other organs except the testis of adult fertile mice. F77 protein was only seen in normal adult testis and epididymis. In contrast to normal C57BL/6 mice, F77 mRNA and protein were not seen in germ cell-deficient Kit(W)/Kit(Wv) mice. By in situ hybridization, F77 mRNA was detected mainly at round spermatids in the sexually mature testis, and immunohistochemical analysis revealed that F77 protein was located at the tail of elongated spermatids. We are proposing the name, sperm-tail-associated protein (Stap), for the gene encoding F77 cDNA. Mol. Reprod. Dev. 59: 350-358, 2001.  相似文献   

2.
Two congenic strains, C57BL-KitW and C57BL-KitS, were generated. The KitW allele originated from strain WB-KitW and the KitS allele from Mus spretus. The KitW/KitS males showed hybrid sterility with small testes, but the females were fertile. The development of the seminiferous tubules of KitW/KitS males stopped before the spermatocyte stage and they were almost free of sperm. The Kit gene is located at position 42 on chromosome 5. We investigated in the C57BL-KitS congenic strain which part of the chromosomal region adjacent to the KitS allele is introduced from SPR into a C57BL background. The region between positions 42 and 44 was derived from SPR. Eleven amino acid substitutions of the KitS cDNA were detected by comparison with the sequence data of the +Kit cDNA from C57BL; seven were in the extracellular domain, one in the transmembrane domain, two in the kinase I domain, and one in the carboxy-terminal tail. The Kit mRNA derived from both KitW and KitS alleles was expressed in the sterile testes of KitW/KitS males.  相似文献   

3.
4.
Hybrid breakdown is a type of reproductive failure that appears after the F2 generation of crosses between different species or subspecies. It is caused by incompatibility between interacting genes. Genetic analysis of hybrid breakdown, particularly in higher animals, has been hampered by its complex nature (i.e., it involves more than two genes, and the phenotype is recessive). We studied hybrid breakdown using a new consomic strain, C57BL/6J-X(MSM), in which the X chromosome of C57BL/6J (derived mostly from Mus musculus domesticus) is substituted by the X chromosome of the MSM/Ms strain (M. m. molossinus). Males of this consomic strain are sterile, whereas F1 hybrids between C57BL/6J and MSM/Ms are completely fertile. The C57BL/6J-X(MSM) males showed reduced testis weight with variable defects in spermatogenesis and abnormal sperm head morphology. We conducted quantitative trait locus (QTL) analysis for these traits to map the X-linked genetic factors responsible for the sterility. This analysis successfully detected at least three distinct loci for the sperm head morphology and one for the testis weight. This study revealed that incompatibility of interactions of X-linked gene(s) with autosomal and/or Y-linked gene(s) causes the hybrid breakdown between the genetically distant C57BL/6J and MSM/Ms strains.  相似文献   

5.
S. H. Pilder  M. F. Hammer    L. M. Silver 《Genetics》1991,129(1):237-246
The effects of heterospecific combinations of mouse chromosome 17 on male fertility and transmission ratio were investigated through a series of breeding studies. Animals were bred to carry complete chromosome 17 homologs, or portions thereof, from three different sources-Mus domesticus, Mus spretus and t haplotypes. These chromosome 17 combinations were analyzed for fertility within the context of a M. domesticus or M. spretus genetic background. Two new forms of hybrid sterility were identified. First, the heterospecific combination of M. spretus and t haplotype homologs leads to complete male sterility on both M. spretus and M. domesticus genetic backgrounds. This is an example of symmetrical hybrid sterility. Second, the presence of a single M. domesticus chromosome 17 homolog within a M. spretus background causes sterility, however, the same combination of chromosome 17 homologs does not cause sterility within the M. domesticus background. This is a case of asymmetrical hybrid sterility. Through an analysis of recombinant chromosomes, it was possible to map the M. domesticus, M. spretus and t haplotype alleles responsible for these two hybrid sterility phenotypes to the same novel locus (Hybrid sterility-4). Previous structural studies had led to the hypothesis that the ancestral t haplotype originated through an introgression event from M. spretus or a related species. If this were true, one might expect that (1) M. spretus homologs would be transmitted at a non-Mendelian ratio within the M. domesticus background, and (2) t haplotypes would be transmitted at a ratio closer to Mendelian within the M. spretus background.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Mouse hybrid sterility and testicular function   总被引:1,自引:0,他引:1  
Crosses of BALB/c female mice and inbred wild male mice (PWD, PWK) produce fertile female progeny, but the male offspring are sterile. The hybrid male sterility is a direct action of the hybrid sterility genes Hst-1s and Hstws. Previous reports concluded that spermatogenic arrest effected the sterility. However, the testicular steroidogenesis of hybrid sterile male mice has not been elucidated. In the present report, the steroidogenic capacity of hybrid sterile and parental strain males was directly assessed by quantifying testosterone secretion by maximally stimulated testes perfused in vitro. Additionally, Leydig cell mass and germ cell volumes were morphometrically determined. The experimental results confirm the deleterious impact of the Hst-1s/Hstws genotype on spermatogenesis and demonstrate for the first time that the steroidogenic capacity of hybrid sterile testes is reduced. The biochemical defects that cause the impairment of testicular function are unknown.  相似文献   

8.
刘进生 《遗传学报》1992,19(4):349-354
采用新育成的茄子功能性雄性不育系uGA 1-MS和2个栽培品种,进行双亲本杂交世代遗传试验,发现F_1和B_2代植株皆雄性正常,B_2和F_2代可育株和不育株呈1:1和3:1分离,表明茄子功能性雄性不育性状由单隐性基因支配,用基因符号fms表示。连锁测验数据表明基因+/fms与果紫色基因X/x紧密连锁。预期该雄性不育性可在茄子杂种优势育种和种子生产上加以利用。  相似文献   

9.
Two ecologically distinct forms, fresh- and brackish-water types, of ninespine stickleback co-exist in several freshwater systems on the coast of eastern Hokkaido. Recent genetic analyses of 13 allozyme loci revealed genetic separation between the two types even though their spawning grounds were in close proximity. On the other hand, there is only a small difference in mitochondrial DNA (mtDNA) sequence between the two types suggesting that they diverged quite recently or that mtDNA introgression occurred between them. To test for postzygotic reproductive isolating mechanisms and hybrid mediated gene flow, we examined the viability and reproductive performance of reciprocal F1 hybrids. The hybrids grew to the adult size normally and both sexes expressed secondary sexual characters in the reciprocal crosses. The female hybrids were reciprocally fertile, while the male hybrids were reciprocally sterile. Histological and flow-cytometric analyses of the hybrid testis revealed that the sterility pattern was classified as 'gametic sterility,' with gonads of normal size but abnormal spermatogenesis. To our knowledge, the present finding is a novel example of one sex hybrid sterility in the stickleback family (Gasterosteidae).  相似文献   

10.
In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.  相似文献   

11.
The hybrid sterility-1 (Hst1) locus at Chr 17 causes male sterility in crosses between the house mouse subspecies Mus musculus domesticus (Mmd) and M. m. musculus (Mmm). This locus has been defined by its polymorphic variants in two laboratory strains (Mmd genome) when mated to PWD/Ph mice (Mmm genome): C57BL/10 (carrying the sterile allele) and C3H (fertile allele). The occurrence of sterile and/or fertile (wild Mmm × C57BL)F1 males is evidence that polymorphism for this trait also exists in natural populations of Mmm; however, the nature of this polymorphism remains unclear. Therefore, we derived two wild-origin Mmm strains, STUS and STUF, that produce sterile and fertile males, respectively, in crosses with C57BL mice. To determine the genetic basis underlying male fertility, the (STUS × STUF)F1 females were mated to C57BL/10 J males. About one-third of resulting hybrid males (33.8%) had a significantly smaller epididymis and testes than parental animals and lacked spermatozoa due to meiotic arrest. A further one-fifth of males (20.3%) also had anomalous reproductive traits but produced some spermatozoa. The remaining fertile males (45.9%) displayed no deviation from values found in parental individuals. QTL analysis of the progeny revealed strong associations of male fitness components with the proximal end of Chr 17, and a significant effect of the central section of Chr X on testes mass. The data suggest that genetic incompatibilities associated with male sterility have evolved independently at the proximal end of Chr 17 and are polymorphic within both Mmd and Mmm genomes.  相似文献   

12.
Hst-3: an X-linked hybrid sterility gene   总被引:4,自引:0,他引:4  
A gene, Hst-3, responsible for sterility in F1 males from crosses between Mus spretus and laboratory strains of mice such as C57BL/6, has been localized on the distal part of the X chromosome, using both DNA probes and biochemical markers on a panel of F1(C57BL/6 x SEG) x C57BL/6 backcross males. This gene may be a model for studying mammalian hybrid sterility.  相似文献   

13.
Kit/stem cell factor (SCF ) has been reported to be involved in survival and proliferation of male differentiating spermatogonial cells. This kinetics study was designed to assess the role of Kit/SCF during spermatogenesis in mice, and the extent of male programmed germ cell death was measured between 8 and 150 days of age. For this purpose, 129/Sv inbred mice in which one Kit allele was inactivated by an nlslacZ sequence insertion (Kit(W-lacZ/+)) were compared with 129/Sv inbred mice with wild-type alleles at the Kit locus. Four different approaches were used: 1) morphometric study to assess spermatogenesis, 2) flow cytometry to study testicular cell ploidy, 3) in situ end labeling to detect apoptosis, and 4) follow-up of reporter gene expression. Spermatogenesis was lower in Kit(W-lacZ/+) heterozygous mice both at the onset of spermatogenesis and during adulthood. Indeed, greater apoptosis occurred at the onset of spermatogenesis. This was followed in the adult by a smaller seminiferous tubule diameter and a lower ratio between type B spermatogonia and type A stem spermatogonia in Kit(W-lacZ/+) mice compared with Kit(+/+) mice. These differences are probably related to the Kit haplodeficiency, which was the only difference between the two genotypes. Germ cell counts and testicular cell ploidy revealed delayed meiosis in Kit(W-lacZ/+) mice. Reporter gene expression confirmed expression of the Kit gene at the spermatogonial stage and also revealed Kit expression during the late pachytene/diplotene transition. These results suggest involvement of Kit/SCF at different stages of spermatogenesis.  相似文献   

14.
Telomere shortening has been causally implicated in replicative senescence in humans. To examine the relationship between telomere length and ageing in mice, we have utilized Mus spretus as a model species because it has telomere lengths of approximately the same length as humans. Telomere length and telomerase were analyzed from liver, kidney, spleen, brain and testis from >180 M.spretus male and female mice of different ages. Although telomere lengths for each tissue were heterogeneous, significant changes in telomere lengths were found in spleen and brain, but not in liver, testis or kidney. Telomerase activity was abundant in liver and testis, but weak to non-detectable in spleen, kidney and brain. Gender differences in mean terminal restriction fragment length were discovered in tissues from M.spretus and from M.spretus xC57BL/6 F1 mice, in which a M. spretus -sized telomeric smear could be measured. The comparison of the rank order of tissue telomere lengths within individual M. spretus showed that certain tissues tended to be longer than the others, and this ranking also extended to tissues of the M.spretus xC57BL/6 F1 mice. These data suggest that telomere lengths within individual tissues are regulated independently and are genetically controlled.  相似文献   

15.
We assessed the fertility (reproductive success, litter size, testis weight, spermatocyte-to-spermatid ratio) of F1s and backcrosses between different wild-derived outbred and inbred strains of two mouse subspecies, Mus musculus domesticus and M. m. musculus . A significant proportion of the F1 females between the outbred crosses did not reproduce, suggesting that female infertility was present. As the spermatocyte-to-spermatid ratio was correlated with testis weight, the latter was used to attribute a sterile vs. fertile phenotype to all males. Segregation proportions in the backcrosses of F1 females yielded 11 (inbred) to 17% (outbred) sterile males, suggesting the contribution of two to three major genetic factors to hybrid male sterility. Only one direction of cross between the inbred strains produced sterile F1 males, indicating that one factor was borne by the musculus X-chromosome. No such differences were observed between reciprocal crosses in the outbred strains. The involvement of the X chromosome in male sterility thus could not be assessed, but its contribution appears likely given the limited introgression of X-linked markers through the hybrid zone between the subspecies. However, we observed no sterile phenotypes in wild males from the hybrid zone, although testis weight tended to decrease in the centre of the transect.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 379–393.  相似文献   

16.
In mice, the juvenile spermatogonial depletion (jsd) mutation results in a single wave of spermatogenesis followed by failure of type A spermatogonial stem cells to repopulate the testis, rendering male animals sterile. It is not clear whether the defect in jsd resides in a failure of the somatic component to support spermatogenesis or in a failure that is intrinsic to the mutant's germ cells. To determine if the jsd intratesticular environment is capable of supporting spermatogenesis, germ cell transplantation experiments were performed in which C57BL/6 ROSA germ cells were transplanted into jsd recipients. To determine if jsd spermatogonia are able to develop in a permissive seminiferous environment, jsd germ cells were transplanted into W/W(v) and busulfan-treated C57BL/6 animals. The data demonstrate that up to 7 mo after transplantation of normal germ cells, jsd seminiferous tubules are capable of supporting spermatogenesis. In contrast, when jsd germ cells were transplanted into busulfan-treated C57BL/6 testis, or into testis of W/W(v) mice, no jsd-derived spermatogenesis was observed. The data support the hypothesis that the jsd phenotype is due to a defect in the germ cells themselves, and not in the intratubular environment.  相似文献   

17.
The inbred mouse strain, C57BL/6J, was derived from mice of the Mus musculus complex. C57BL/6J can be crossed in the laboratory with a closely related mouse species, M. spretus to produce fertile offspring; however there has been no previous evidence of gene flow between M. spretus and M. musculus in nature. Analysis of the repetitive sequence LINE-1, using both direct sequence analysis and genomic Southern blot hybridization to species-specific LINE-1 hybridization probes, demonstrates the presence of LINE-1 elements in C57BL/6J that were derived from the species M. spretus. These spretus-like LINE-1 elements in C57BL/6J reveal a cross to M. spretus somewhere in the history of C57BL/6J. It is unclear if the spretus-like LINE-1 elements are still embedded in flanking DNA derived from M. spretus or if they have transposed to new sites. The number of spretus-like elements detected suggests a maximum of 6.5% of the C57BL/6J genome may be derived from M. spretus.  相似文献   

18.
L. W. Zeng  R. S. Singh 《Genetics》1993,135(1):135-147
We have attempted to estimate the number of genes involved in postzygotic reproductive isolation between two closely related species, Drosophila simulans and Drosophila sechellia, by a novel approach that involves the use of high resolution two-dimensional gel electrophoresis (2DE) to examine testis proteins in parents, hybrids and fertile and sterile backcross progenies. The important results that have emerged from this study are as follows: (1) about 8% of about 1000 proteins examined showed divergence (presence/absence) between the two species; (2) by tracing individual proteins in parental, hybrid and backcross males, we were able to associate the divergent proteins with different chromosomes and found that most divergent proteins are associated with autosomes and very few with X chromosome, Y chromosome and cytoplasm; (3) when proteins showing both quantitative and qualitative differences between the two species were examined in F(1) hybrid males, most (97.4%) proteins were expressed at levels between the two parents and no sign of large scale changes in spot density was observed. All the proteins observed in the two parental species were present in F(1) hybrid males except two species-specific proteins that may be encoded (or regulated) by sex chromosomes; (4) when different fertile and sterile backcross male testes were compared, a few D. sechellia-specific proteins were identified to be consistently associated with male sterility. These results along with the observation that a large proportion (23.6%) of first generation backcross males were fertile show that hybrid male sterility between D. simulans and D. sechellia involves a relatively small number of genes. Role of large scale genetic changes due to general genome incompatibility is not supported. The results also suggest that the large effect of X chromosome on hybrid male sterility is not due to higher divergence of X chromosome than autosomes.  相似文献   

19.
Male F1 hybrids between inbred strains and Mus macedonicus have very small testes and are sterile. Cytological analysis of testes shows very few meioses. To determine the genetic basis for this sterility, (C57BL/6J × Mus macedonics) F1 females were mated to males from C57BL/10J. In about half the male progeny no meiosis I was observed. About half of the animals that progressed through meiosis I showed other indications of low fertility and the balance appeared fertile. QTL analysis of the progeny suggested that loci on proximal Chrs 17 and X were involved in the sterility and a locus on Chr X in variation of body weight. There is also evidence that X//Y dissociation of the pseudo-autosomal region occurs. The QTLs on Chrs X and 17 together account for about 37% of the variance for testis weight. Congenic lines B.MAC-X(1-38), and B.MAC-17(1-23) have been constructed using a modified speed congenic approach. Testis tubules from B.MAC-X(1-38) are narrow and vacuolated. They contain only Sertoli cells and mitotically dividing spermatogonia. Very occasionally a meiotic metaphase can be observed, but no sperm are produced. Homozygous males from B.MAC-17(1-23) are sterile, producing sperm heads but no complete sperm.  相似文献   

20.
Hybrid male sterility is a common outcome of crosses between different species. Gene expression studies have found that a number of spermatogenesis genes are differentially expressed in sterile hybrid males, compared with parental species. Late‐stage sperm development genes are particularly likely to be misexpressed, with fewer early‐stage genes affected. Thus, a link has been posited between misexpression and sterility. A more recent alternative explanation for hybrid gene misexpression has been that it is independent of sterility and driven by divergent evolution of male‐specific regulatory elements between species (faster male hypothesis). The faster male hypothesis predicts that misregulation of spermatogenesis genes should be independent of sterility and approximately the same in both hybrids, whereas sterility should only affect gene expression in sterile hybrids. To test the faster male hypothesis vs. the effect of sterility on gene misexpression, we analyse spermatogenesis gene expression in different species pairs of the Drosophila phylogeny, where hybrid male sterility occurs in only one direction of the interspecies cross (i.e. unidirectional sterility). We find significant differences among genes in misexpression with effects that are lineage‐specific and caused by sterility or fast male regulatory divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号