首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microsatellite DNA markers for a critically endangered Mekong giant catfish (Pangasianodon gigas Roberts and Vidthayanon, 1991) were developed from fin clips collected from captive fish using (GT)15 probe. The number of alleles per locus ranged from two to four. The expected heterozygosities ranged from 0.13 to 0.68. Also, these primers were successfully amplified in four closely related species, Pangasius bocourti, Pangasius conchophilus, Pangasius larnaudii and Pangasius sanitwongsei with the number of alleles per locus ranged from 1 to 13, 1 to 16, 1 to 12 and 1 to 4, respectively. These markers should prove to be very useful for the evaluation of genetic diversity for this species and other related Pangasius species.  相似文献   

2.
Jondeung A  Sangthong P  Zardoya R 《Gene》2007,387(1-2):49-57
The Mekong giant catfish (Pangasianodon gigas) is the largest scale-less freshwater fish of the world, and a critically endangered species. We determined the complete nucleotide sequence (16,533 bp) of the mitochondrial genome of the Mekong giant catfish, and conducted phylogenetic analyses based on mitochondrial protein (the combined amino acid sequences of all 13 mitochondrial protein coding genes) and rRNA (the combined nucleotide sequences of mitochondrial 12S and 16S rRNA genes) data sets in order to further clarify the relative phylogenetic position of P. gigas, and to recover phylogenetic relationships among 15 out of the 33 families of Siluriformes. Phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, Bayesian inference) of the protein data set were congruent with a basal split of the order into Loricarioidei and Siluroidei, and supported a closer relationship of the Mekong giant catfish (family Pangasiidae) to Siluridae than to Bagridae. The rRNA-based Bayesian phylogeny recovered Callichthyidae as the sister group of all other analyzed non-diplomystid catfish families, rendering Loricarioidei paraphyletic. In addition, Loricariidae were recovered as paraphyletic due to the inclusion of Astroblepidae. However, none of the two relationships received bootstrap support in the maximum parsimony, minimum evolution, and maximum likelihood analyses, and should be interpreted with caution. The derived position of Cetopsidae within Siluroidei, the sister group relationship of Pseudopimelodidae and Pimelodidae, and a close relationship of Doradidae and Auchenipteridae to the exclusion of Mochokidae were strongly supported. Pangasiidae was placed as a single lineage without clear affinities.  相似文献   

3.
4.
Catfishes of the family Pangasiidae are an important group that contributes significantly to the fisheries of the Mekong River basin. In recent times the populations of several catfish species have declined, thought to be due to overfishing and habitat changes brought about by anthropogenic influences. The Mekong giant catfish Pangasianodon gigas Chevey, 1913 is listed as Critically Endangered on the IUCN Red List. In the present study, we assessed the level of genetic diversity of nine catfish species using sequences of the large subunit of mitochondrial DNA (16S rRNA). Approximately 570 base pairs (bp) were sequenced from 672 individuals of nine species. In all species studied, haplotype diversity and nucleotide diversity ranged from 0.118±0.101 to 0.667±0.141 and from 0.0002±0.0003 to 0.0016±0.0013, respectively. Four haplotypes were detected among 16 samples from natural populations of the critically endangered Mekong giant catfish. The results, in spite of the limited sample size for some species investigated, indicated that the level of genetic variation observed in wild populations of the Mekong giant catfish (haplotype diversity=0.350±0.148, nucleotide diversity=0.0009±0.0008) is commensurate with that of some other related species. This finding indicates that (1) wild populations of the Mekong giant catfish might be more robust than currently thought or (2) present wild populations of this species carry a genetic signature of the historically larger population(s). Findings from this study also have important implications for conservation of the Mekong giant catfish, especially in designing and implementing artificial breeding programme for restocking purposes.  相似文献   

5.
The vertical movements of one Mekong giant catfish Pangasianodon gigas were monitored for 3 days in August 2004 using a depth-temperature micro data logger. The logger was recovered using an innovative time-scheduled release system and located by searching for VHF radio signals. The logger was found approximately 2.2 km away from the release point and provided (n=705,128) depth and temperature data collected over a period of 98 hours following the release. The fish spent more than 99% of its time at less than 3 m below the surface. The maximum swimming depth was 5.6 m. No sharp thermocline was present during the experiment. Temperature did not have any detectable effect on the pattern of vertical movement of the fish. The dissolved oxygen concentration (DO) was stratified, with a concentration of >60% saturation in the first 3 m below the surface falling to 10% saturation at depths lower than 4 m. This specific DO stratification was found to limit the vertical movement of the catfish.  相似文献   

6.
The critically endangered Pangasianodon gigas is endemic to the Mekong River. Despite its importance, little is known about its genetic diversity and conservation efforts are hampered. Ten polymorphic dinucleotide microsatellite primer pairs were developed from DNA of P. gigas. The analysis of 20 individuals from hatchery stocks using these primers resulted in two to six alleles/locus; HO = 0.05–0.95; HE = 0.05–0.81. All but one locus (Pg‐3) conformed to Hardy–Weinberg expectation. Eight, six and seven primer pairs were amplified with the DNA from Pangasianodon hypophthalmus, Pangasius larnaudii and Pangasius sanitwongsei, respectively. These markers will be useful for genetic monitoring of wild and hatchery stocks of these pangasiids.  相似文献   

7.
Giant catfish growth hormone (gcGH) cDNA was cloned and expressed in E. coli. The expected 20.5 kDa protein corresponded to the mature gcGH and was efficiently expressed. This protein was produced as inclusion bodies and comprised about 20% of total cellular proteins. The recombinant hormone promoted growth when injected intramuscularly or intraperitoneally into goldfish (Carassius auratus) at 0.1 or 1 microg soluble gcGH per g fish body wt per week. In addition, the recombinant gcGH inclusions had growth-promoting activity similar to that of the soluble form when the fish was received either by intraperitoneal injection or by oral administration.  相似文献   

8.
So N  Maes GE  Volckaert FA 《Heredity》2006,96(2):166-174
The detection and conservation of spawning units is of crucial importance in highly migratory species. The sutchi catfish Pangasianodon hypophthalmus (Pangasiidae; Teleostei) is a common large-sized tropical fish, which migrates annually to several upstream spawning sites on the Lower Mekong River and feeds on the huge floodplain of the Lower Mekong and Tonle Sap for the other half of the year. We hypothesised that because of the relative size of the feeding and spawning habitat, genetic variability would be high and homogeneous in foraging populations, but that spawning stocks would be distinct in space and time. To test these predictions, 567 individuals from 10 geographic locations separated by up to 1230 km along the Lower Mekong River were genotyped at seven microsatellite loci. The level of genetic diversity was much higher than other freshwater fish and reached values comparable to marine species (mean H(e)=0.757). All samples collected at the potential spawning sites deviated from Hardy-Weinberg expectations, suggesting admixture. Individual-based clustering methods revealed genetic heterogeneity and enabled the detection of three genetically distinct sympatric populations. There was no evidence of recent reduction in effective population size in any population. Contrasting with the vast extent of the feeding grounds, the shortage of spawning grounds seems to have moved sutchi catfish towards diachronous spawning. Hence the sustainable exploitation of this natural resource hinges on the conservation of the limited spawning grounds and open migration routes between the spawning and feeding grounds.  相似文献   

9.
Larvae of the sutchi catfish Pangasianodon hypophthalmus were collected during peak downstream drift in the Lower Mekong river on four occasions over an 8-week period during the 2003 spawning season, and genotyped using seven microsatellite loci. We provide evidence for several heterogeneous groups within and among the temporally discrete larval peak samples. Strong evidence for a significant deficit of heterozygotes was observed for each larval sample and the pooled sample, possibly due to population admixture. Although individual-based assignment tests suggested that each larval peak sample was admixed, significant but low genetic differentiation was observed among larval samples ( F ST = 0.0052, P  < 0.01). The lack of significant relatedness confirms the multifamily composition of each larval group, excluding family bias to explain the observed genetic heterogeneity. Both the entire larval peak and each temporally separated larval peak originated from spawning groups with heterogeneous allelic composition involving several distinct spawning events. We propose three explanations to account for our findings: (1) the ecological match/mismatch hypothesis; (2) the genetic 'sweepstakes' selection hypothesis; and (3) life-history-specific characteristics of the spawning populations. Finally, an intra-annual shift in the contribution of the spawning populations to the larval drift was detected on successive occasions.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 719–728.  相似文献   

10.
11.
12.
《Genomics》2021,113(5):3349-3356
Striped catfish (Pangasianodon hypophthalmus), belonging to the Pangasiidae family, has become an economically important fish with wide cultivation in Southeast Asia. Owing to the high-fat trait, it is always considered as an oily fish. In our present study, a high-quality genome assembly of the striped catfish was generated by integration of Illumina short reads, Nanopore long reads and Hi-C data. A 731.7-Mb genome assembly was finally obtained, with a contig N50 of 3.5 Mb, a scaffold N50 of 29.5 Mb, and anchoring of 98.46% of the assembly onto 30 pseudochromosomes. The genome contained 36.9% repeat sequences, and a total 18,895 protein-coding genes were predicted. Interestingly, we identified a tandem triplication of fatty acid binding protein 1 gene (fabp1; thereby named as fabp1-1, fabp1-2 and fabp1-3 respectively), which may be related to the high fat content in striped catfish. Meanwhile, the FABP1-2 and -3 isoforms differed from FABP1-1 by several missense mutations including R126T, which may affect the fatty acid binding properties. In summary, we report a high-quality chromosome-level genome assembly of the striped catfish, which provides a valuable genetic resource for biomedical studies on the high-fat trait, and lays a solid foundation for practical aquaculture and molecular breeding of this international teleost species.  相似文献   

13.
This report describes the presence of a unique dual domain carbonic anhydrase (CA) in the giant clam, Tridacna gigas. CA plays an important role in the movement of inorganic carbon (Ci) from the surrounding seawater to the symbiotic algae that are found within the clam's tissue. One of these isoforms is a glycoprotein which is significantly larger (70 kDa) than any previously reported from animals (generally between 28 and 52 kDa). This alpha-family CA contains two complete carbonic anhydrase domains within the one protein, accounting for its large size; dual domain CAs have previously only been reported from two algal species. The protein contains a leader sequence, an N-terminal CA domain and a C-terminal CA domain. The two CA domains have relatively little identity at the amino acid level (29%). The genomic sequence spans in excess of 17 kb and contains at least 12 introns and 13 exons. A number of these introns are in positions that are only found in the membrane attached/secreted CAs. This fact, along with phylogenetic analysis, suggests that this protein represents the second example of a membrane attached invertebrate CA and it contains a dual domain structure unique amongst all animal CAs characterized to date.  相似文献   

14.
15.
Air-breathing fish are common in the tropics, and their importance in Asian aquaculture is increasing, but the respiratory physiology of some of the key species such as the striped catfish, Pangasianodon hypophthalmus Sauvage 1878 is unstudied. P. hypophthalmus is an interesting species as it appears to possess both well-developed gills and a modified swim bladder that functions as an air-breathing organ indicating a high capacity for both aquatic and aerial respiration. Using newly developed bimodal intermittent-closed respirometry, the partitioning of oxygen consumption in normoxia and hypoxia was investigated in P. hypophthalmus. In addition the capacity for aquatic breathing was studied through measurements of oxygen consumption when access to air was denied, both in normoxia and hypoxia, and the critical oxygen tension, Pcrit, was also determined during these experiments. Finally, gill ventilation and air-breathing frequency were measured in a separate experiment with pressure measurements from the buccal cavity. The data showed that P. hypophthalmus is able to maintain standard metabolic rate (SMR) through aquatic breathing alone in normoxia, but that air-breathing is important during hypoxia. Gill ventilation was reduced during air-breathing, which occurred at oxygen levels below 8 kPa, coinciding with the measured Pcrit of 7.7 kPa. The findings in this study indicate that the introduction of aeration into the aquaculture of P. hypophthalmus could potentially reduce the need to air-breathe. The possibility of reducing air-breathing frequency may be energetically beneficial for the fish, leaving more of the aerobic scope for growth and other activities, due to the proposed energetic costs of surfacing behavior.  相似文献   

16.
The present study was conducted to evaluate the effects of dietary nucleotides (NT) on growth performance, immune responses, and intestinal morphology of striped catfish, Pangasianodon hypophthalmus. Different levels of NT (0, 0.25. 0.5, 0.75, and 1% weight per weight, WW?1) were used in the basal diet and then randomly allocated to triplicate groups of fish with an average initial weight of 1.52 ± 0.11 g for 10 weeks. Nucleotide supplementation did not improve growth parameters significantly (P > 0.05). Feeding fish with a NT‐containing diet significantly improved ACH50 activity and IgM levels in comparison to the control group (P < 0.05). The dietary NT (P < 0.05) affected the intestinal morphology, whereby the folds and enterocyte heights in the mid‐intestine were significantly increased compared to the control group (P < 0.05), while the microvilli length was not affected. The results indicate that feeding striped catfish with commercial NT have significant effects on the immune parameters and intestinal morphology of catfish and that the best NT levels are 0.25 and 0.5%.  相似文献   

17.
Hummingbirds (family Trochilidae) represent an extreme outcome in vertebrate physiological design and are the only birds capable of sustained hovering. The giant hummingbird (Patagona gigas) is the largest trochilid, with a mass of ~20 g, and is found over an altitudinal range from 0 to 4,500 m above sea level. We report here measurements of daily, basal, and hovering rates of oxygen consumption in the giant hummingbird; compare these values with data from smaller hummingbirds; and assess overall metabolic and allometric limits to trochilid body size. The sustained metabolic scope (i.e., the ratio of daily energy expenditure to basal metabolic rate) in the giant hummingbird is higher than that in smaller hummingbirds but lies below a proposed theoretical maximum value for endotherms. Scaling exponents in the allometric relationships for different modes of energetic expenditure were comparable, suggesting that the giant hummingbird, although a clear outlier in terms of body size, does not obviously deviate from metabolic relationships derived from other trochilid taxa.  相似文献   

18.
Though air-breathing has probably evolved mainly as a response to hypoxia, it may provide an important oxygen supplement when metabolism is elevated, as for example during swimming. Due to the increased travelling distance involved when an air-breathing fish swims to and from the surface, and the increased drag when the surface is breached, it can be proposed that air-breathing results in a rise in the apparent cost of transport. In order to investigate this hypothesis, it is necessary to use a fish that is able to swim equally well with and without access to air. The striped catfish Pangasianodon hypophthalmus has been shown to have a sufficiently high capacity for aquatic oxygen uptake in normoxia, to allow for such a comparison. Here, we measured the partitioning of oxygen uptake ( $ \dot{M}{\text{O}}_{2} $ ) during swimming and recovery, and calculated the apparent cost of transport with and without access to air, under normoxic conditions. Aerial $ \dot{M}{\text{O}}_{2} $ constituted 25–40 % of the total $ \dot{M}{\text{O}}_{2} $ during swimming and less than 15 % during recovery. The net cost of transport was 25 % lower in fish that did not air-breathe compared to fish that did, showing that the cost of surfacing can be substantial. This is the first study to measure partitioning in an air-breathing fish during swimming at velocities close to the critical swimming speed.  相似文献   

19.
In the brain of the African catfish aromatase activity was demonstrated with two different methods using [7-3H]androstenedione and [19-3H]androstenedione as substrates. Kinetic analysis of estrogen formation following incubations of a cell-free fraction of brain homogenates showed that the apparent Km is the same for both substrates (0.03 micro M), but the Vmax is smaller with [19-3H]androstenedione as substrate. This indicates a so-called isotope effect. A time course study showed that after an incubation of 4 hr the aromatase activity is still linearly time dependent. Comparing the amount of estrogens formed from both precursors showed that the value of the isotope effect is 3.4 Incubation of symmetric punches of telencephalon and diencephalon with the two substrates likewise showed an isotope effect of 3.4  相似文献   

20.
Selenium (Se) is a multifunctional trace element required in specific amounts for the optimal growth of aquatic finfish species. For this reason, this study investigated the effect of Se nanoparticles on the growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish (Pangasianodon hypophthalmus). Striped catfish fed varying Se nanoparticles levels (0. 0.5, 1, and 2 mg/kg) in triplicate units and kept for 60 days. Striped catfish delivered dietary Se nanoparticles had markedly increased growth performance, specific growth rate (SGR), consumed feed, and protein efficiency ratio but reduced feed conversion ratio (FCR). The whole body, liver, muscle, and gills have higher Se accumulation levels in fish that received Se nanoparticles than the control with the highest level in fish fed 2 mg/kg. The carcass composition showed higher protein content in fish fed 1 and 2 mg/kg (p = 0.001 and 0.001) and higher ash content (p = 0.001 and 0.002) in fish fed 2 mg/kg than the remaining groups. Superoxide dismutase was meaningfully activated in Striped catfish delivered 1 and 2 mg Se nanoparticles/kg compared with the control (p < 0.05). Also, catalase and glutathione peroxidase activities were higher, and malondialdehyde level was lower in Striped catfish fed Se nanoparticles at 0.5, 1, and 2 mg/kg than the control (p < 0.05). The villi exhibited a visible increase in both height and branching with an increased level of Se nanoparticles in addition to the increased number of goblet cells. The Se nanoparticles-treated fish revealed dose-dependent modifications fluctuated from diffuse fatty vacuolization in hepatocytes with eccentric pyknotic hepatocytes nuclei. In conclusion, Se nanoparticles are required for the optimum growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish. Based on SGR and FCR data's regression analysis, Se nanoparticles are recommended at 1.02–1.11 mg/kg diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号