首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have described a clone of mouse cells, termed "8A," which appears to be infected with a replication-defective variant of Moloney murine leukemia virus (MuLV) (Rein et al., J. Virol. 25:146-156, 1978). Clone 8A cells release virus particles which do not form plaques in the standard XC test. However, approximately 10(2) particles per ml of clone 8A supernatant do form plaques in a modified XC test (the "complementation plaque assay"), in which the assay cells are coinfected with the XC-negative, nondefective amphotropic MuLV as well as the test virus. Superinfection of clone 8A cells themselves with amphotropic MuLV results in the production of approximately 10(5), rather than approximately 10(2), particles per ml which register in the complementation plaque assay. This increase is due to the rescue of replication-defective ecotropic MuLV from clone 8A cells by amphotropic MuLV since (i) this ecotropic MuLV can only form XC plaques in cells which are coinfected with amphotropic MuLV; and (ii) it is possible to transmit this defective variant, rescued from superinfected clone 8A cells, to a fresh clone of normal mouse cells. The time course of production of the rescued MuLV particles by superinfected clone 8A cells is virtually identical to that of rescue from these cells of murine sarcoma virus. Amphotropic MuLV superinfection of "NP-N" cells, which contain a "non-plaque-forming" variant of N-tropic MuLV (Hopkins and Jolicoeur, J. Virol. 16:991-999, 1975), also increases the titer of particles registering in the complementation plaque assay; thus, NP-N cells, like clone 8A cells, contain a rescuable defective variant of ecotropic MuLV.  相似文献   

2.
Li M  Yang C  Compans RW 《Journal of virology》2001,75(5):2337-2344
During viral maturation, the cytoplasmic tail of the murine leukemia virus (MuLV) envelope (Env) protein undergoes proteolytic cleavage by the viral protease to release the 16-amino-acid R peptide, and this cleavage event activates the Env protein's fusion activity. We introduced Gly and/or Ser residues at different positions upstream of the R peptide in the cytoplasmic tail of the Friend MuLV Env protein and investigated their effects on fusion activity. Expression in HeLa T4 cells of a mutant Env protein with a single Gly insertion after I619, five amino acids upstream from the R peptide, induced syncytium formation with overlaid XC cells. Env proteins containing single or double Gly-Ser insertions after F614, 10 amino acids upstream from the R peptide, induced syncytium formation, and mutant proteins with multiple Gly insertions induced various levels of syncytium formation between HeLa T4 and XC cells. Immunoprecipitation and surface biotinylation assays showed that most of the mutants had surface expression levels comparable to those of the wild-type or R peptide-truncated Env proteins. Fluorescence dye redistribution assays also showed no hemifusion in the Env proteins which did not induce fusion. Our results indicate that insertion mutations in the cytoplasmic tail of the MuLV Env protein can suppress the inhibitory effect of the R peptide on membrane fusion and that there are differences in the effects of insertions in two regions in the cytoplasmic tail upstream of the R peptide.  相似文献   

3.
To determine whether ecotropic murine leukemia virus (MuLV) envelope glycoproteins are sufficient to cause cell-to-cell fusion when expressed in the absence of virus production, we used an ecotropic MuLV, AKV, to construct env expression vectors that lack the gag and pol genes. The rat cell line XC, which undergoes cell-to-cell fusion upon infection with ecotropic MuLV, was transfected with wild-type env expression vectors, and high levels of syncytium formation resulted. Transfection of the murine cell line NIH 3T3 with expression vectors containing the wild-type or mutated env region did not result in syncytium formation. Immunoprecipitation analysis of the envelope glycoproteins expressed in NIH 3T3 and XC cells showed that the mature surface glycoprotein expressed in XC cells was of a much lower apparent molecular weight than that expressed in NIH 3T3 cells. Further characterization showed that most if not all of this difference was the result of differences in glycosylation. Finally, site-directed mutagenesis was used to introduce several conservative and nonconservative changes into the amino-terminal region of the transmembrane protein. Analysis of the effect of these mutations confirmed that this region is a fusion domain.  相似文献   

4.
Most simple retroviruses induce tumors of a single cell type when infected into susceptible hosts. The SRS 19-6 murine leukemia virus (MuLV), which originated in mainland China, induces leukemias of multiple cellular origins. Indeed, infected mice often harbor more than one tumor type. Since the enhancers of many MuLVs are major determinants of tumor specificity, we tested the role of the SRS 19-6 MuLV enhancers in its broad disease specificity. The enhancer elements of the Moloney MuLV (M-MuLV) were replaced by the 170-bp enhancers of SRS 19-6 MuLV, yielding the recombinants DeltaMo+SRS(+) and DeltaMo+SRS(-) M-MuLV. M-MuLV normally induces T-lymphoid tumors in all infected mice. Surprisingly, when neonatal mice were inoculated with DeltaMo+SRS(+) or DeltaMo+SRS(-) M-MuLV, all tumors were of T-lymphoid origin, typical of M-MuLV rather than SRS 19-6 MuLV. Thus, the SRS 19-6 MuLV enhancers did not confer the broad disease specificity of SRS 19-6 MuLV to M-MuLV. However, all tumors contained DeltaMo+SRS M-MuLV proviruses with common enhancer alterations. These alterations consisted of tandem multimerization of a subregion of the SRS 19-6 enhancers, encompassing the conserved LVb and core sites and adjacent sequences. Moreover, when tumors induced by the parental SRS 19-6 MuLV were analyzed, most of the T-lymphoid tumors had similar enhancer alterations in the same region whereas tumors of other lineages retained the parental SRS 19-6 MuLV enhancers. These results emphasize the importance of a subregion of the SRS 19-6 MuLV enhancer in induction of T-cell lymphoma. The relevant sequences were consistent with crucial sequences for T-cell lymphomagenesis identified for other MuLVs such as M-MuLV and SL3-3 MuLV. These results also suggest that other regions of the SRS 19-6 MuLV genome contribute to its broad leukemogenic spectrum.  相似文献   

5.
fu-1 cells, a nonfusing variant of the L8 line of rat myoblasts, form syncytia upon infection with murine leukemia virus (MuLV) or upon cocultivation with MuLV-infected cells; L8 cells do not form these syncytia, but do fuse into multinucleate myotubes. Syncytia of fu-1 cells form within 1 h after infection. The number of syncytia formed is proportional to the multiplicity of virus within a range of 4 to 16 and is maximum when the cell density is subconfluent. When either XC or fu-1 cells are productively infected with MuLV, they become resistant to syncytia formation by passage 3. The rapid formation of syncytia in fu-1 cells was found amenable for selection of temperature-sensitive mutants of MuLV and for screening additional variants of the L8 line.  相似文献   

6.
Entry of ecotropic murine leukemia virus (MuLV) into host cells is initiated by interaction between the receptor-binding domain of the viral SU protein and the third extracellular domain (TED) of the receptor, cationic amino acid transporter 1 (CAT1). To study the molecular basis for the retrovirus-receptor interaction, mouse CAT1 (mCAT1) was expressed in human 293 cells as a fusion protein with jellyfish green fluorescent protein (GFP). Easily detected by fluorescence microscopy and immunoblot analysis with anti-GFP antibodies, the mCAT1-GFP fusion protein was expressed in an N-glycosylated form on the cell surface and in the Golgi apparatus, retaining the ecotropic receptor function. The system was applied to compare Friend MuLV (F-MuLV) and its neuropathogenic variant, PVC-211 MuLV, which exhibits a unique cellular tropism and host range, for the ability to use various CAT family members as a receptor. The results indicated that F-MuLV and PVC-211 MuLV could infect the cells expressing wild-type mCAT1 at comparable efficiencies and that rat CAT3, but not mCAT2, conferred a low but detectable level of susceptibility to F-MuLV and PVC-211 MuLV. The data also suggested that CAT proteins might be expressed in an oligomeric form. Further application of the system developed in this study may provide useful insights into the entry mechanism of ecotropic MuLV.  相似文献   

7.
We have identified mutations in the human immunodeficiency virus type 1 (HIV-1) matrix protein (MA) which block infectivity of virions pseudotyped with murine leukemia virus (MuLV) envelope (Env) glycoproteins without affecting infectivity conferred by HIV-1 Env or vesicular stomatitis virus G glycoproteins. This inhibition is very potent and displays a strong transdominant effect; infectivity is reduced more than 100-fold when wild-type and mutant molecular clones are cotransfected at a 1:1 ratio. This phenomenon is observed with both ecotropic and amphotropic MuLV Env. The MA mutations do not affect the incorporation of MuLV Env into virions. We demonstrate that in HIV-1 virions pseudotyped with MuLV Env, the HIV-1 protease (PR) efficiently catalyzes the cleavage of the p15(E) transmembrane (TM) protein to p12(E). Immunoprecipitation analysis of pseudotyped virions reveals that the mutant MA blocks this HIV-1 PR-mediated cleavage of MuLV TM. Furthermore, the transdominant inhibition exerted by the mutant MA on wild-type infectivity correlates with the relative level of p15(E) cleavage. Consistent with the hypothesis that abrogation of infectivity imposed by the mutant MA is due to inhibition of p15(E) cleavage, mutant virions are significantly more infectious when pseudotyped with a truncated p12(E) form of MuLV Env. These results indicate that HIV-1 Gag sequences can influence the viral PR-mediated processing of the MuLV TM Env protein p15(E). These findings have implications for the development of HIV-1-based retroviral vectors pseudotyped with MuLV Env, since p15(E) cleavage is essential for activating membrane fusion and virus infectivity.  相似文献   

8.
Oncogenicity of AKR endogenous leukemia viruses.   总被引:11,自引:0,他引:11       下载免费PDF全文
Four biologically distinct groups of endogenous murine leukemia virus (MuLV) have been isolated from AKR mice. These viruses included (i) ecotopic XC+ MuLV that occur in high titer in normal tissues and serum of AKR mice throughout their life span, (ii) ecotropic XC- MuLV that are produced in high titers by leukemia cells, (iii) xenotropic MuLV that are readily demonstrable only in aged mice, and (iv) polytropic MuLV thatarise in the thymuses of aged mice as a consequence of genetic recombination between ecotropic and xenotropic MuLV. Virus of each of these biological classes were assayed in AKR mice for their ability to accelerate the occurrence of spontaneous leukemia. Certain isolates of ecotropic XC- MuLV and polytropic MuLV were found to have high oncogenic activity. These viruses induced 100% leukemias within 90 days of inoculation. In contrast, ecotropic XC+ MuLV that were obtained from AKR embryo fibroblasts and xenotropic MuLV that were obtained from the lymphoid tissues of aged AKR mice did not demonstrate oncogenic activity. These findings demonstrate fundamental differences between XC- and XC+ ecotropic MuLV that are found in leukemic and normal tissues, respectively. Furthermore, these findings point to the role of ecotropic XC- and polytropic MuLV in the spontaneous leukemogenesis of AKR mice.  相似文献   

9.
10.
The nature of murine sarcoma virus (MSV) "defectiveness" was investigated by employing an MSV-transformed mouse 3T3 cell line which releases noninfectious virus-like particles. Rescue kinetics of MSV, observed after murine leukemia virus (MuLV) superinfection of these "sarcoma-positive leukemia-negative (S + L -)" mouse 3T3 cells, consisted of a 9- to 12-hr eclipse period followed by simultaneous release of both MSV and MuLV with no evidence for release of infectious MSV prior to the production of progeny MuLV. Addition of thymidine to the growth medium of MuLV-superinfected S + L - cells at a concentration suppressing deoxyribonucleic acid synthesis inhibited the replication of MuLV and the rescue of MSV. MSV production closely paralleled MuLV replication under a variety of experimental conditions. These results suggest that replication of MuLV is required for the rescue of infectious MSV from S + L - cells and that one (or more) factor, produced late in the MuLV replicative cycle, is utilized by both viruses during virion assembly. During the course of these experiments, virus stocks were recovered which contained infectious MSV in apparent excess over MuLV. These stocks were used for generating new S + L - cell lines by simple end point dilution procedures.  相似文献   

11.
12.
The cytoplasmic tail of the murine leukemia virus (MuLV) envelope (Env) protein is known to play an important role in regulating viral fusion activity. Upon removal of the C-terminal 16 amino acids, designated as the R peptide, the fusion activity of the Env protein is activated. To extend our understanding of the inhibitory effect of the R peptide and investigate the specificity of inhibition, we constructed chimeric influenza virus-MuLV hemagglutinin (HA) genes. The influenza virus HA protein is the best-studied membrane fusion model, and we investigated the fusion activities of the chimeric HA proteins. We compared constructs in which the coding sequence for the cytoplasmic tail of the influenza virus HA protein was replaced by that of the wild-type or mutant MuLV Env protein or in which the cytoplasmic tail sequence of the MuLV Env protein was added to the HA cytoplasmic domain. Enzyme-linked immunosorbent assays and Western blot analysis showed that all chimeric HA proteins were effectively expressed on the cell surface and cleaved by trypsin. In BHK21 cells, the wild-type HA protein had a significant ability after trypsin cleavage to induce syncytium formation at pH 5.1; however, neither the chimeric HA protein with the full-length cytoplasmic tail of MuLV Env nor the full-length HA protein followed by the R peptide showed any syncytium formation. When the R peptide was truncated or mutated, the fusion activity was partially recovered in the chimeric HA proteins. A low-pH conformational-change assay showed that similar conformational changes occurred for the wild-type and chimeric HA proteins. All chimeric HA proteins were capable of promoting hemifusion and small fusion pore formation, as shown by a dye redistribution assay. These results indicate that the R peptide of the MuLV Env protein has a sequence-dependent inhibitory effect on influenza virus HA protein-induced membrane fusion and that the inhibitory effect occurs at a late stage in fusion pore enlargement.  相似文献   

13.
Splenocyte plaque assay for the detection of murine leukemia virus.   总被引:10,自引:0,他引:10  
A modified XC assay for murine leukemia virus (MuLV) employing splenocytes taken directly from the animal is described. This modification can be more than 1000 times more sensitive than XC plaque assays employing tissue extracts. This technique should lend itself readily to the quantitation of infectious MuLV in defined populations of lymphoid cells.  相似文献   

14.
Pseudotype virus vectors serve as a powerful tool for the study of virus receptor usage and entry. We describe the development of murine leukemia virus (MuLV) particles pseudotyped with the visna virus envelope glycoprotein and encoding a green fluorescent protein reporter as a tool to study the expression of the visna virus receptor. Functional MuLV/visna virus pseudotypes were obtained when the cytoplasmic tail of the visna virus envelope TM protein was truncated to 3, 7, or 11 amino acids in length. MuLV/visna virus particles were used to transduce a panel of cell types from various organisms, including sheep, goat, human, hamster, mouse, monkey, and quail. The majority of the cells examined were susceptible to MuLV/visna pseudotype viruses, supporting the notion that the visna virus cellular receptor is a widely expressed protein found in many species. Of 16 different cell types tested, only mouse embryo fibroblast NIH 3T3 cells, hamster ovary CHO cells, and the human promonocyte cell line U937 cells were not susceptible to transduction by the pseudotyped virus. The production of functional MuLV/visna virus pseudotypes has provided a sensitive, biologically relevant system to study visna virus cell entry and envelope-receptor interactions.  相似文献   

15.
Abstract: Mice infected with the retrovirus mixture designated LP-BM5 murine leukemia virus (MuLV) develop an immunosuppressive disease. Quinolinic acid (QUIN) is an endogenous neurotoxic N -methyl- d -aspartate agonist that may contribute to the pathogenesis of HIV-associated neurologic disease. In the present study, the levels of QUIN in brain and blood were measured in mice infected with LP-BM5 MuLV and compared with those in uninfected mice and mice infected with the nonpathogenic strain of ecotropic MuLV (helper component of LP-BM5 MuLV). Infection with LP-BM5 MuLV resulted in progressive increases in blood QUIN levels beginning 2 weeks after inoculation that peaked by 16 weeks postinfection. QUIN levels were also increased in cerebral cortex, hippocampus, and striatum. In systemic tissues, QUIN levels were increased in lung, liver, and spleen. In contrast, infection with the ecotropic viral component of the LP-BM5 MuLV mixture was not associated with any changes in brain, blood, or systemic tissue QUIN levels, even though helper virus burdens were comparable to those in mice infected with LP-BM5 MuLV. Treatment of LP-BM5 MuLV-infected mice with the antiretroviral agent zidovudine (azidothymidine) significantly reduced blood and brain QUIN levels in association with reductions in viral load in brain and spleen. These observations suggest that elevated QUIN production is not attributable to productive infection with retrovirus per se but occurs in response to an agent or agents, such as cytokines, that are produced by the host in response to virus infection.  相似文献   

16.
The epitope specificities and functional activities of monoclonal antibodies (MAbs) specific for the murine leukemia virus (MuLV) SU envelope protein subunit were determined. Neutralizing antibodies were directed towards two distinct sites in MuLV SU: one overlapping the major receptor-binding pocket in the N-terminal domain and the other involving a region that includes the most C-terminal disulfide-bonded loop. Two other groups of MAbs, reactive with distinct sites in the N-terminal domain or in the proline-rich region (PRR), did not neutralize MuLV infectivity. Only the neutralizing MAbs specific for the receptor-binding pocket were able to block binding of purified SU and MuLV virions to cells expressing the ecotropic MuLV receptor, mCAT-1. Whereas the neutralizing MAbs specific for the C-terminal domain did not interfere with the SU-mCAT-1 interaction, they efficiently inhibited cell-to-cell fusion mediated by MuLV Env, indicating that they interfered with a postattachment event necessary for fusion. The C-terminal domain MAbs displayed the highest neutralization titers and binding activities. However, the nonneutralizing PRR-specific MAbs bound to intact virions with affinities similar to those of the neutralizing receptor-binding pocket-specific MAbs, indicating that epitope exposure, while necessary, is not sufficient for viral neutralization by MAbs. These results identify two separate neutralization domains in MuLV SU and suggest a role for the C-terminal domain in a postattachment step necessary for viral fusion.  相似文献   

17.
Mouse hepatitis virus (MHV) infection spreads from MHV-infected DBT cells, which express the MHV receptor CEACAM1 (MHVR), to BHK cells, which are devoid of the receptor, by intercellular membrane fusion (MHVR-independent fusion). This mode of infection is a property of wild-type (wt) JHMV cl-2 virus but is not seen in cultures infected with the mutant virus JHMV srr7. In this study, we show that soluble MHVR (soMHVR) potentiates MHVR-independent fusion in JHMV srr7-infected cultures. Thus, in the presence of soMHVR, JHMV srr7-infected DBT cells overlaid onto BHK cells induce BHK cell syncytia and the spread of JHMV srr7 infection. This does not occur in the absence of soMHVR. soMHVR also enhanced wt virus MHVR-independent fusion. These effects were dependent on the concentration of soMHVR in the culture and were specifically blocked by the anti-MHVR monoclonal antibody CC1. Together with these observations, direct binding of soMHVR to the virus spike (S) glycoprotein as revealed by coimmunoprecipitation demonstrated that the effect is mediated by the binding of soMHVR to the S protein. Furthermore, fusion of BHK cells expressing the JHMV srr7 S protein was also induced by soMHVR. These results indicated that the binding of soMHVR to the S protein expressed on the DBT cell surface potentiates the fusion of MHV-infected DBT cells with nonpermissive BHK cells. We conclude that the binding of soMHVR to the S protein converts the S protein to a fusion-active form competent to mediate cell-cell fusion, in a fashion similar to the fusion of virus and cell membranes.  相似文献   

18.
A modification of the XC cell procedure for murine leukemia virus assay which yields quantitative data over a wide range of virus concentrations is described. By using serial passage of infected cell cultures and reversal of the plating sequence in the XC procedure, titers of radiation leukemia virus (RadLV) were obtained which were about 10-fold higher than those found by using the conventional assay. By using the modified procedure, it was observed that, even at high multiplicities of infection, less than 10% of the cells function as infective centers, although the proportion increases with serial passage. It was also observed that exposure of infected cells to UV light, which is commonly used to make plaques more visible in the conventional XC cell test, inhibits plaque formation in the RadLV system. Substitution of X irradiation for UV exposure improved plaque visibility without loss of sensitivity.  相似文献   

19.
A retroviral Env molecule consists of a surface glycoprotein (SU) complexed with a transmembrane protein (TM). In turn, these complexes are grouped into oligomers on the surfaces of the cell and of the virion. In the case of murine leukemia viruses (MuLVs), the SU moieties are polymorphic, with SU proteins of different viral isolates directed towards different cell surface receptors. During maturation of the released virus particle, the 16 C-terminal residues of TM (the R peptide or p2E) are removed from the protein by the viral protease; this cleavage is believed to activate the membrane-fusing potential of MuLV Env. We have tested the possibility that different MuLV Env proteins in the same cell can interact with each other, both physically and functionally, in mixed oligomers. We found that coexpressed Env molecules can be precipitated out of cell lysates by antiserum which reacts with only one of them. Furthermore, they can evidently cooperate with each other: if one Env species lacks the R peptide, then it can apparently induce fusion if the SU protein of the other Env species encounters its cognate receptor on the surface of another cell. This functional interaction between different Env molecules has a number of implications with respect to the mechanism of induction of membrane fusion, for the genetic analysis of Env function, and for the design of targeted retroviral vectors for gene therapy.  相似文献   

20.
C L Reed  F Rapp 《Journal of virology》1976,19(3):1028-1033
The interaction of endogenous type C viruses with superinfecting herpes simplex virus type 2 (HSV-2) was investigated in two murine cell lines. Replication of HSV-2 was suboptimal in random-bred Swiss/3T3A cells and, in initial experiments, infection with a low virus-to-cell ratio resulted in carrier cultures with enhanced murine leukemia virus (MuLV) p30 expression. Immunofluorescence tests with Swiss/3T3A cells productively infected with HSV-2 also showed HSV-associated cytoplasmic antigens and enhanced MuLV p30 expression when compared with uninfected controls. Inactivation of HSV-2 with UV light did not abolish this reaction, although the number of cells expressing p30 was reduced. HSV-2 replicated more efficiently in a line of NIH Swiss cells (N c1 A c1 10). These cells are not readily inducible for type C expression by conventional methods; however, untreated and UV-inactivated HSV-2 induced both HSV-2-associated antigens and MuLV p30 in these cells. Although the Birch strain of human cytomegalovirus induced MuLV p30, neither mouse cytomegalovirus nor vesicular stomatitis virus induced MuLV p30 in either cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号