首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Changes in the ganglioside long-chain base (LCB) composition in rat cerebellar granule cells in culture were studied during differentiation and aging. The total native ganglioside mixtures, extracted from the cells maintained in culture up to 22 days, were fractionated by reversed-phase HPLC, each ganglioside homogeneous in the oligosaccharide chain as well as in the LCB being quantified. Two main LCBs were components of the ganglioside species of cultured cells, the C18:1 LCB and the C20:1 LCB. The content of C20:1 ganglioside molecular species was low and quite constant during differentiation, comprising ∼8% of the total ganglioside species content, the C20:1 LCB appearing to be represented more in the ganglioside of the "b series" (GD1b, GT1b, and GQ1b) than in the "a series" (GM1 and GD1a). During aging in culture, for 8–22 days, the content of the C20:1 species of all gangliosides increased, being more pronounced for GM1 and GD1a.  相似文献   

2.
GD1a is the major ganglioside of rabbit brain microsomal membranes and occurs mainly with two molecular species, containing the C18:1 (62.3%) and C20:1 (37.7%) long-chain bases. The membranes were exposed to Vibrio cholerae (VC) sialidase under conditions where the enzyme hydrolyzed only GD1a (approximately 9%), producing GM1 ganglioside, whereas the other gangliosides remained virtually unaffected. The long-chain-base analysis showed that newly-formed GM1 contained approximately 68% of the C20:1 molecular species. This indicates that VC sialidase did not randomly affect the two molecular species of GD1a but hydrolyzed preferentially the C20:1 one. In similar experiments, GD1a was inserted into the external layer of phosphatidylcholine vesicles and incubated with VC sialidase under conditions producing approximately 10% hydrolysis. Long-chain-base analysis showed that the proportion of C20:1 species in GM1 was 25.1% using vesicles composed of dipalmitoylphosphatidylcholine and 42.3% with egg phosphatidylcholine, whereas it was 39.2% in the starting GD1a. Therefore, in artificial membranes, VC sialidase acted preferentially on the C18:1 or C20:1 molecular species, depending on the length and unsaturation of the phospholipid fatty acids. Because VC sialidase is known to affect molecular dispersions more easily than packed aggregations of the gangliosidic substrate, the data suggest that in rabbit brain microsomal membranes the GD1a ganglioside molecular species carrying C20:1 long-chain base are more molecularly dispersed than those containing C18:1 long-chain base.  相似文献   

3.
The thermotropic behavior (studied by high-sensitivity differential scanning calorimetry) and susceptibility to Vibrio cholerae sialidase hydrolysis of large unilamellar vesicles of dipalmitoyl-phosphatidylcholine, containing native GD1a ganglioside or the molecular species of GD1a containing C18:1 or C20:1 long-chain base (C18:1 GD1a; C20:1 GD1a), were studied. Vesicles containing ganglioside (10% in molar terms) showed the presence in the heat capacity function of a second minor peak besides the phospholipid main transition peak. The presence of a second peak is much more evident with C20:1 GD1a than with C18:1 GD1a, the difference being potentiated by Ca2+ and indicating a different tendency of the CD1a molecular species to undergo lateral phase separation. The scans of vesicles containing native GD1a showed the features of those obtained with C18:1 GD1a and C20:1 GD1a, indicating that the main components of native GD1a, C18:1 GD1a and C20:1 GD1a, maintain their individual aggregative properties. V. cholerae sialidase affects vesicle-bound GD1a at a much higher rate (17-25-fold) than it does micellar GD1a, the activation by Ca2+ being 3- and 2-fold, respectively. The Vmax values were identical on C18:1 GD1a and C20:1 GD1a in micellar dispersions, whereas they were markedly higher (from 20 to 50%) on C18:1 GD1a than on C20:1 GD1a in vesicular dispersions. Exhaustive sialidase hydrolysis of vesicles carrying native GD1a produced C18:1 GM1 and C20:1 GM1 in the same proportion as the C18:1 and C20:1 species present in native GD1a (53.9% and 46.1%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Abstract: Age-related changes of the ceramide composition of gangliosides were studied in the synaptosomal and myelin fractions from rat brain, carrying plasma membranes of neuronal and glial origin, respectively. The five major gangliosides (GM1, GD1 a, GD1 b, GT1 b, and GQ1 b) present in these fractions were separated and quantitated by normal-phase HPLC. Each ganglioside was then fractionated by reverse-phase HPLC into the molecular species carrying a single long-chain base (LCB). The largely preponderant LCBs in the synaptosomal and myelin fractions were the C18:1 and C20:1. The content of C20.1 LCB, generally low at 1 month, increased with age in all analyzed gangliosides and in all subcellular fractions and was greater in the "b series" than in the "a series" gangliosides. Remarkably, GM1 was the only ganglioside where the proportion of LCB 20:1 was higher in the synaptosomal fraction than in the myelin fraction. The fatty acid composition of the C18:1 or C20:1 LCB species of the different gangliosides in the synaptosomal and myelin fractions did not undergo appreciable changes with age. Stearic acid was largely predominant in all the gangliosides of the synaptosomal fraction, more in the C18:1 than in the C20:1 LCB species (80–90% vs. 60–70%). The gangliosides of the myelin fraction were characterized by a lower content of 18:0 and a much higher content of 16:0 and 18:1 fatty acids than those of the synaptosomal fraction. Thus, the ceramide composition is different in the gangliosides of neuronal and myelin origin and appears to be subjected to an age-related control.  相似文献   

5.
The influence of ceramide composition on the rate of GM1 association to HeLa cells has been investigated by incubating the cells in the presence of either native ganglioside or molecular species carrying highly homogeneous long chain base moieties, fractionated from native GM1. The GM1 ganglioside species carrying the unsaturated C18 long chain base moiety proved to have the fastest rate of association, whereas the saturated species carrying 20 carbon atoms had the slowest rate. After having increased the GM1 cell content (65-fold) by incubation with the various ganglioside species, the cells were incubated with cholera toxin and the time course of cyclic AMP accumulation was monitored. Remarkable differences among cells enriched with the various molecular species were found in the duration of the lag time preceding the accumulation of cyclic AMP, the shortest being displayed by the unsaturated C18 species. Moreover, the amount of cyclic AMP accumulated after a given time of incubation with cholera toxin was significantly higher when the C18:1-GM1 species was present than with native GM1. Fluorescence anisotropy experiments, carried out using the probe 1,3-diphenylhexatriene, show that the GM1 ganglioside ceramide moiety was also modifying the cell membrane fluidity of the host.  相似文献   

6.
A new procedure is described for preparing the molecular species of GM1 ganglioside that carry a single fatty acid (myristic (C14:0), stearic (C18:0), arachidic (C20:0) or lignoceric (C24:0) acid) and a single long chain base (C18 or C20 sphingosine, C18 or C20 sphinganine, each of them in natural 3D(+)erythro or unnatural 3L(-)threo form). The procedure consisted of the following steps: a) alkaline hydrolysis of GM1 ganglioside in the presence of tetramethylammonium hydroxide, which produces de-N-acylation of the ceramide and de-N-acetylation of the sialic acid residue; b) specific re-N-acylation at the long chain base amino group with a new fatty acid (myristic, stearic, arachidic, or lignoceric) in the presence of 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride; and c) final re-N-acetylation at the level of the sialic acid residue. GM1 ganglioside molecular species, completely homogeneous in the ceramide portion, were prepared by reversed phase high performance liquid chromatography. The GM1 ganglioside molecular species were analyzed for saccharide, fatty acid, and long chain base composition by chemical and spectrometric analyses. Using a combination of the two procedures, 32 different molecular species of GM1 ganglioside, over 99% homogeneous, have been prepared.  相似文献   

7.
An enzyme activity which catalyzed the transfer of galactose from UDP-galactose to GM2 ganglioside was demonstrated in rat liver homogenate and enriched 38-fold in specific activity by preparation of Golgi membranes. This activity could be solubilized from Golgi membranes by sonication and extraction with 1% Triton X-100. The solubilized activity catalyzed the formation of GM1 ganglioside and was completely dependent upon the addition of acceptor. The rate of galactose incorporation was constant for up to 5 h at 30 degrees C. This enzyme activity was further purified by gel filtration on Sepharose CL-6B and ion exchange chromatography on DEAE-Sepharose. The elution position on gel filtration corresponded to a molecular weight for the enzyme of 38,000 which was in good agreement with that obtained by sedimentation velocity studies. Ion exchange chromatography resolved GM2 ganglioside galactosyltransferase into two species. The more basic enzyme (I) comprising 28% of the recovered activity was not retarded by the column, whereas enzyme II was eluted from the resin following the application of a salt gradient. Net purification was 120- to 140-fold for each enzyme with a total recovery of 42%. Unlike the activity in the Golgi extract, the purified enzymes I and II were labile to freezing and could be stored at -20 degrees C only in the presence of 50% glycerol. Both enzymes I and II had similar molecular weights and Michaelis constants and both had a strict requirement for Mn2+. Properties which distinguish the two enzymes included pH optima (enzyme I 7.0, enzyme II 6.0) and surfactant requirements. Neither enzyme was active following removal of Triton X-100 from the preparation. Among a series of glycolipids tested for ability to serve as substrates for galactose transfer only GM2 and asialo-GM2 ganglioside served as acceptors.  相似文献   

8.
M Masserini  E Freire 《Biochemistry》1986,25(5):1043-1049
The thermotropic behavior of dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine large unilamellar vesicles containing ganglioside GM1 of homogeneous long chain base composition has been studied by high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. At neutral pH and in the absence of Ca2+, the thermotropic behavior of these systems is independent of the ganglioside chain length composition. The presence of Ca2+ at concentrations higher than 5 mM induces ganglioside phase separation in a manner dependent upon the length difference between the ganglioside long chain base and the phosphatidylcholine acyl chains. The analysis of the chain length dependence of the thermotropic behavior suggests that the driving force for ganglioside phase separation is not a Ca2+-induced cross-bridging of the ganglioside head group but a passive ganglioside exclusion from Ca2+-perturbed phosphatidylcholine-rich regions within the bilayer. Experiments with native ganglioside GM1, primarily a mixture of C18:1 and C20:1 long chain bases, indicate that the individual components of the mixture maintain their characteristic behavior within the lipid bilayer matrix. These results, together with the presence of a phase transition in native GM1 micellar dispersions, absent in purified C18:1 or C20:1 ganglioside micelles, strengthen the idea of a possible role of chain length composition in the modulation of ganglioside function.  相似文献   

9.
Changes in the Ceramide Composition of Rat Forebrain Gangliosides with Age   总被引:4,自引:3,他引:1  
Five major gangliosides (GM1, GD1a, GD1b, GT1b, and GQ1b) were extracted and isolated by normal-phase HPLC from the forebrain of Sprague-Dawley rats of ages ranging from 3 days to 24 months. Each ganglioside was fractionated by reverse-phase HPLC into the molecular species carrying a single long-chain base moiety. At all ages, the C18:1 and C20:1 long-chain base species predominated, whereas the C18:0 and C20:0 ones represented 1-3% of the total. The C18:1 long-chain base species, predominant at 3 days (91-96%), diminished with age and reached, at 2 years, 73%, 65%, 61%, 59%, and 45% of the total for GD1a, GM1, GT1b, GD1b, and GQ1b, respectively. The content of the C20:1 long-chain base species, low at birth (4-9%), increased with age in all gangliosides and reached, at 2 years, 27-55% of the total. The developmental behavior of the ganglioside species containing the C18:1 long-chain base was characterized by the following: (a) a biphasic profile with a maximum around 15 days for GD1a, the most abundant ganglioside at all ages; (b) an increase until 6 months for GM1; (c) a sharp decrease until 30 days, followed by leveling for GT1b; and (d) a low, constant level for GD1b and GQ1b. All the ganglioside species containing the C20:1 long-chain base showed a constant increase during development, the increase being more marked in the first 30 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Cell surface glycolipids of normal human fibroblasts and NCTC2071 cells (transformed mouse fibroblasts) were labeled by incubating the intact cells with either galactose oxidase or sodium periodate, followed by reduction of the oxidized sugar residues with NaB3H4. In intact human fibroblasts, incorporation of 3H was increased with increasing time of exposure to galactose oxidase prior to treatment with NaB3H4. Following limited exposure to galactose oxidase, more label was incorporated into the larger glycolipids. Although labeling of the monosialoganglioside GM1 was maximal by 16 h, not all of the GM1 in the intact cells appeared to be accessible to galactose oxidase, since 10 to 12 times more GM1 was labeled when cells were disrupted before incubation with the enzyme. The human fibroblasts contained approximately 8 X 10(6) molecules of GM1 per cell. Maximal binding of choleragen (5 X 10(5) molecules of [125I]choleragen per cell) completely prevented cholevented oxidation of GM1 in intact fibroblasts by galactose oxidase but only partially protected the sialic acid moiety of GM1 from oxidation by periodate. Choleragen had little effect on the enzymatic or chemical oxidation of other glycolipids. NCTC 2071 cells do not contain endogenous GM1 but incorporate exogenous GM1 from the culture medium. When bound to NCTC 2071 cells, exogenous GM1 was protected by choleragen from oxidation by galactose oxidase or whether endogenous or taken up from the incubation medium, are, after interaction with choleragen, less accessible to oxidation by periodate or galactose oxidase.  相似文献   

11.
The micellar properties of mixtures of GM1 ganglioside and the non-ionic amphiphile Triton X-100 in 25 mM Na phosphate-5 mM di Na EDTA buffer (pH = 7.0) were investigated by quasielastic light scattering in a wide range of Triton/GM1 molar ratios and in the temperature range 15–37°C. These measurements: (a) provided evidence for the formation of mixed micelles; (b) allowed the determination of such parameters as the molecular weight and the hydrodynamic radius of the mixed micelles; (c) showed the occurrence of statistical aggregates of micelles with increasing temperature and micelle concentration. Galactose oxidase was chosen for studying the relation between enzyme activity and micellar properties. The action of the enzyme on GM1 was found to be strongly dependent on the micellar structure. In particular: (a) galactose oxidase acted very poorly on homogeneous GM1 micelles, while affecting mixed GM1/Triton X-100 micelles; (b) at fixed GM1 concentration the oxidation rate increased by enhancing Triton X-100 concentration and followed a biphasic kinetics with a break at a certain Triton X-100 concentration; (c) the formation of statistical micelle aggregates was followed by inhibition of the enzyme activity.  相似文献   

12.
The interaction of galactose oxidase with native and desialylated glycophorin A was studies by oxidizing human erythrocytes and globoside/phospholipid vesicles with the enzyme. Oxidation of the glycolipid was improved in the presence of vesicle-incorporationted glycophorin A. Although galactose oxidase is a very basic protein, it was not adsorbed on native human erythrocytes. Instead, neuraminidase-treated cells bound a substantial amount of galactose oxidase, but the enzyme seemed to be released into the buffer when desialylated glycoproteins had been oxidized.Abbreviation PBS 0.01 M sodium phosphate-0.15 M NaCl, pH 7.4  相似文献   

13.
Oxidation of glycolipids in liposomes by galactose oxidase   总被引:1,自引:0,他引:1  
Small unilamellar phosphatidylcholine vesicles containing globo-series glycolipids were labeled by the galactose oxidase/NaB[3H]4 procedure. The major glycolipid of human red cells, globoside, was the best substrate for galactose oxidase both in vesicles and in tetrahydrofuran-containing buffer. The oxidation rates of membrane-bound ceramide trihexoside and Forssman glycolipid were one-fourth and one-tenth, respectively, of the oxidation rate of globoside. Membrane-bound ceramide dihexoside was not a substrate for galactose oxidase, although it was readily oxidized in tetrahydrofuran-containing buffer. Soluble sialoglycoproteins and membrane-incorporated glycophorin A stimulated the oxidation of globoside-containing vesicles, whereas membrane-bound GD1a ganglioside had no effect on globoside oxidation.  相似文献   

14.
Gangliosides are particularly abundant in the central nervous system (CNS) and thought to play important roles in memory formation, neuritogenesis, synaptic transmission, and other neural functions. Although several molecular species of gangliosides have been characterized and their individual functions elucidated, their differential distribution in the CNS are not well understood. In particular, whether the different molecular species show different distribution patterns in the brain remains unclear. We report the distinct and characteristic distributions of ganglioside molecular species, as revealed by imaging mass spectrometry (IMS). This technique can discriminate the molecular species, raised from both oligosaccharide and ceramide structure by determining the difference of the mass-to-charge ratio, and structural analysis by tandem mass spectrometry. Gangliosides in the CNS are characterized by the structure of the long-chain base (LCB) in the ceramide moiety. The LCB of the main ganglioside species has either 18 or 20 carbons (i.e., C18- or C20-sphingosine); we found that these 2 types of gangliosides are differentially distributed in the mouse brain. While the C18-species was widely distributed throughout the frontal brain, the C20-species selectively localized along the entorhinal-hippocampus projections, especially in the molecular layer (ML) of the dentate gyrus (DG). We revealed development- and aging-related accumulation of the C-20 species in the ML-DG. Thus it is possible to consider that this brain-region specific regulation of LCB chain length is particularly important for the distinct function in cells of CNS.  相似文献   

15.
Balb/c 3T3 cells contain a large number [(0.8-1.6) x 10(6)] of high-affinity (half-maximal binding at 0.2 nM) binding sites for cholera toxin that are resistant to proteolysis, but are quantitatively extracted with chloroform/methanol. The following evidence rigorously establishes that the receptor is a ganglioside similar to, or identical with, ganglioside GM1 by the galactose oxidase/NaB3H4 technique on intact cells was inhibited by cholera toxin. (2) Ganglioside GM1 was specifically adsorbed from Nonidet P40 extracts of both surface- (galactose oxidase/NaB3H4 technique) and metabolically ([1-14C]palmitate) labelled cells in the presence of cholera toxin, anti-toxin and Staphylococcus aureus. (3) Ganglioside GM1 was the only ganglioside labelled when total cellular gangliosides separated on silica-gel sheets were overlayed with 125I-labelled cholera toxin, although GM3 and GD1a were the major gangliosides present. In contrast no evidence for a galactoprotein with receptor activity was obtained. Cholera toxin did not protect the terminal galactose residues of cell-surface glycoproteins from labelling by the galactose oxidase/NaB3H4 technique. No toxin-binding proteins could be identified in Nonidet P40 extracts of [35S]-methionine-labelled cells by immunochemical means. After sodium dodecyl sulphate/polyacrylamide-gel electrophoresis none of the major cellular galactoproteins identified by overlaying gels with 125I-labelled ricin were able to bind 125I-labelled cholera toxin. It is concluded that the cholera toxin receptor on Balb/c 3T3 cells is exclusively ganglioside GM1 (or a related species), and that cholera toxin can therefore be used to probe the function and organisation of gangliosides in these cells as previously outlined [Critchley, Ansell, Perkins, Dilks & Ingram (1979) J. Supramol. Struct. 12, 273-291].  相似文献   

16.
M Masserini  P Palestini  E Freire 《Biochemistry》1989,28(12):5029-5034
The thermotropic behavior of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides has been studied by high-sensitivity heating and cooling differential scanning calorimetry. These studies have been directed to identify and evaluate the influence of both the ganglioside lipidic portion and oligosaccharide moiety on the physical properties of phospholipid bilayers containing gangliosides. The influence of the ganglioside lipidic portion has been evaluated by studying the behavior of vesicles containing different GD1a molecular species carrying homogeneous lipid moieties (C20 or C18 sphingosine or sphinganine and stearic acid). The influence of the ganglioside saccharide portion was evaluated by investigating the thermotropic behavior of vesicles containing different gangliosides (GM1, Fuc-GM1, GD1a, GT1b) carrying the same homogeneous long-chain base moiety (C20 sphingosine and stearic acid). These studies, in conjunction with previous studies using homogeneous lipidic portion ganglioside GM1 and phosphatidylcholines of various chain lengths [Masserini, M., & Freire, E. (1986) Biochemistry 25, 1043-1049], indicate that, for a given oligosaccharide composition, gangliosides exhibit lateral phase separation in an extent dependent upon the length and unsaturation difference between the ganglioside long-chain base and phosphatidylcholine acyl chains. For a given ganglioside lipidic composition the extent of phase separation is dependent upon the number of sugar units present in the glycolipid. The addition of Ca2+ induces or enhances phase separation in a manner dependent on the long-chain base and oligosaccharide composition. Cooling differential scanning calorimetry experiments showed that the ganglioside property to form aggregates within the membrane is independent of the initial physical state of the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To investigate the effect of the ceramide moiety of GM1 ganglioside on its association with detergent resistant membrane domains (DRMs) in human leukemia HL-60 cells, [(3)H] labeled GM1 molecular species (GM1s) with ceramides consisting of C18 sphingosine acetylated or acylated with C(8), C(12), C(14), C(16), C(18), C(22), C(24), C(18:1), C(22:1), or C(24:1) fatty acids (FAs), or C20 sphingosine acetylated or acylated with C(8) or C(18) FA were prepared and added to culture media. GM1s uptake by HL-60 cells was affected by the structure of their ceramides. Resistance to removal with trypsin and the stoichiometry of [(125)I] cholera toxin (CT) binding indicated that the added GM1s were incorporated into the membranes of the cells used for the isolation of DRMs in a manner resembling endogenous gangliosides. The ceramide moieties of the GM1s determined their occurrence in DRMs and the dependence of their recovery in this membrane fraction on the amount of Triton X-100 (TX) used for extraction as well as on cholesterol depletion. The GM1s with sphingosine acylated with C(14), C(16), C(18) C(22), or C(24) FAs were similarly abundant in DRMs. GM1s acylated with C(18:1), C(22:1), or C(24:1) were less abundant than those acylated with saturated FA of the same length. GM1s acetylated or acylated with C(8) FA were detected in DRMs in the lowest proportion. Depletion of 73% of cell cholesterol with methyl-beta-cyclodextrin significantly affected the recovery in DRMs of GM1s acetylated or acylated with C(8) or unsaturated FAs but not of GM1 acylated with C(18), C(22), or C(24) FAs. After cross-linking with CT B subunit, all GM1s were recovered in DRMs in a similarly high proportion irrespective of their ceramide structure or cholesterol depletion. DRMs prepared with low TX concentration at the TX/cell protein ratio of 0.3:1 were separated by multistep sucrose density gradient centrifugation into two fractions. The GM1s with sphingosine acetylated or acylated with C(18) or C(18:1) FAs occurred in these fractions in different proportions.  相似文献   

18.
R E Brown  K J Hyland 《Biochemistry》1992,31(43):10602-10609
The spontaneous incorporation of II3-N-acetylneuraminosylgangliotetraosylceramide (GM1) from its micelles into phospholipid bilayer vesicles has been investigated to determine whether curvature-induced changes in membrane lipid packing influence ganglioside uptake. Use of conventional liquid chromatography in conjunction with technically-improved molecular sieve gels permits ganglioside micelles to be separated from phospholipid vesicles of different average size including vesicles with diameters smaller than 40 nm and, thus, allows detailed study of native ganglioside GM1 incorporation into model membranes under conditions where complicating processes like fusion are readily detected if present. At 45 degrees C, the spontaneous transfer rate of GM1 from its micelles to small unilamellar vesicles (SUVs) comprised of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) is at least 3-fold faster than that to similar composition large unilamellar vesicles (LUVs) prepared by octyl glucoside dialysis. Careful analysis of ganglioside GM1 distribution among vesicle populations of differing average size reveals that GM1 preferentially incorporates into the smaller vesicles of certain populations. This behavior is observed in SUVs as well as in LUV-SUV mixtures and actually serves as a sensitive indicator for the presence of trace quantities of SUVs in various LUV preparations. Analysis of the results shows that both differences in the diffusional collision frequency between GM1 monomers and either SUVs or LUVs and curvature-induced changes in the interfacial lipid packing in either SUVs or LUVs can dramatically influence spontaneous ganglioside uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Gangliosides GM2, GM1 and GD1b were radiolabelled at C-6 of the terminal galactose orN-acetylgalactosamine by the galactose oxidase/[3H]NaBH4 method; gangliosides GM2, GM1, Fuc-GM1 and GD1a were radiolabelled at C-3 of the long chain base by the 2,3-dichloro-5,6-dicyanobenzoquinone/[3H]NaBH4 method.By application of an original HPLC procedure, eight different molecular species were prepared from each labelled ganglioside. Each of these species was characterized by the presence of one of the following long chain bases:erythro C18 sphingosine,threo C18 sphingosine,erythro C18 sphinganine,threo C18 sphinganine,erythro C20 sphingosine,threo C20 sphingosine,erythro C20 sphinganine andthreo C20 sphinganine.From GD1b only the species containing theerythro forms of long chain bases were obtained.The individual molecular species were more than 99% homogeneous and had a radiopurity better than 99%. The molecular species of the same ganglioside, radiolabelled at C-3 of the long chain base, had identical specific radioactivity, namely 1.17, 1.25, 0.85 and 1.28 Ci/mmol for GM2, GM1, Fuc-GM1 and GD1a respectively. The molecular species of the same ganglioside, radiolabelled at C-6 of terminal galactose orN-acetylgalactosamine, had similar specific radioactivity, namely 1.34–1.40, 1.44–1.51, 1.37–1.44 Ci/mmol for GM2, GM1 and GD1b respectively.  相似文献   

20.
A study has been made of the association properties of the two GM1 ganglioside molecular species GM1-C18 and GM1-C20 (containing C18 and C20 long chain bases, respectively) to rat cerebellar granule cells in culture. Both gangliosides recognized, to the same extent, and associated with them to give a form of association, the trypsin-labile form. This form was removed by treatment with trypsin enzyme. Both gangliosides associated stably with the cells to become components of the cell membranes. Although similar amounts of the two gangliosides entered the cells, being then metabolized, the time course of the association was different for the two gangliosides: after 15 h of ganglioside-cell incubation the amount of GM1-C18 inserted into the cell membrane was 2.43 times higher than that of GM1-C20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号