首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root-induced nitrogen mineralisation: A theoretical analysis   总被引:1,自引:0,他引:1  
The possibility is examined that carbon (C) released into the soil from a root could enhance the availability of inorganic nitrogen (N) to plants by stimulating microbial activity. The release of soluble C compounds from roots is assumed to occur by one of two general processes: cortical cell death or exudation from intact cells. On the basis of several assumptions chosen to allow maximal amounts of N mineralisation to be calculated, greater amounts of net N mineralisation are theoretically possible at realistic soil C:N ratios of bacteria are grazed by predators such as protozoa, than if bacteria alone are active. More N is mineralised when the substrate released from the root has a high C:N ratio (as in cell death) than when it is relatively N-rich. The amounts of N that a root might realistically cause to be mineralised are unlikely to account entirely for high nitrate inflow rates that have been measured experimentally. However there are circumstances in which the loss of C from roots is essential if any N is to be mineralised and obtained by plants.  相似文献   

2.
We made use of pot experiments and soil mineralisation assays to test the effect of temperature on the soil nitrogen (N) economy of the Drakensberg Alpine Centre (‘mountain site’). The approach was enhanced by the inclusion of a contrasting warm, subtropical environment on the east coast of southern Africa (‘coast site’) which presented an opportunity to test plant growth in mountain soil outside of the mountain site's natural climatic envelope. This study was further augmented by two greenhouse experiments that helped isolate the factors responsible for the growth responses in the experiments above. Plant morphology, plant nutrients and soil nutrients were used as the basis for comparing treatment effects. The primary pot experiment showed that plant growth was uniform in the mountain site regardless of whether the test species was grown in intrinsically N-rich mountain soil or intrinsically N-poor coast soil. However, we noted significant growth differences at the coast site using the aforementioned soil nutrient regimes. In terms of the soil mineralisation assay, coast soil, derived from intrinsically N-poor sandstone, predictably mineralised little soil inorganic N at the mean spring temperature of 19 °C. However against expectations, the intrinsically N-rich mountain soil mineralised < 1% of its total soil N budget into inorganic N at 12 °C, most probably because the microbes responsible for the conversion of organic soil N to inorganic soil N were severely inhibited at this mean spring temperature. However, the potential to mineralise far more N in mountain soil was apparent when using an elevated experimental temperature of 30 °C, with 369% more soil N being available under the latter regime. Our results suggest that the cooler temperatures associated with high elevations in the mountain site constrain the activity of soil microbes in mountain soil, resulting in a functionally N-poor soil economy particularly deficient in inorganic N. This also explains the similar growth responses regardless of the soil being intrinsically N-rich or N-poor. We speculate whether or not more soil inorganic N may become available under a regime of warming due to accelerated N mineralisation, to the detriment of plant taxa adapted to low soil N availability.  相似文献   

3.
Peter Sørensen 《Plant and Soil》2004,267(1-2):285-296
About 50–60% of dairy cattle slurry nitrogen is ammonium N. Part of the ammonium N in cattle slurry is immobilised due to microbial decomposition of organic matter in the slurry after application to soil. The immobilisation and the remineralisation influence the fertiliser value of slurry N and the amount of organic N that is retained in soil. The immobilisation and the remineralisation of 15 N-labelled dairy cattle slurry NH4-N were studied through three growing seasons after spring application under temperate conditions. Effects of slurry distribution (mixing, layer incorporation, injection, surface-banding) and extra litter straw in the slurry on the plant utilisation of labelled NH4-N from slurry were studied and compared to the utilisation of 15N-labelled mineral fertiliser. The initial immobilisation of slurry N was influenced by the slurry distribution in soil. More N was immobilised when the slurry was mixed with soil. Surface-banding of slurry resulted in significant volatilisation losses and less residual 15N in soil. Much more N was immobilised after slurry incorporation than after mineral fertiliser application. After 2.5 years the recovery of labelled N in soil (0–25 cm) was 46% for slurry mixed with soil, 42% for injected slurry, 22% for surface-banded slurry and 24% for mineral fertiliser N. The total N uptake in a ryegrass cover crop was 5–10 kg N/ha higher in the autumn after spring-application of cattle slurry (100–120 kg NH4-N/ha) compared to the mineral fertiliser N reference, but the immobilised slurry N (labelled N) only contributed little to the extra N uptake in the autumn. Even in the second autumn after slurry application there was an extra N uptake in the cover crop (0–10 kg N/ha). The residual effect of the cattle slurry on spring barley N uptake was insignificant in the year after slurry application (equivalent to 3% of total slurry N). Eighteen months after application, 13% of the residual 15N in soil was found in microbial biomass whether it derived from slurry or mineral fertiliser, but the remineralisation rate (% crop removal of residual 15N) was higher for fertiliser- than for slurry-derived N, except after surface-banding. Extra litter straw in the slurry had a negligible influence on the residual N effects in the year after application. It is concluded that a significant part of the organic N retained in soil after cattle slurry application is derived from immobilised ammonium N, but already a few months after application immobilised N is stabilised and only slowly released. The immobilised N has negligible influence on the residual N effect of cattle slurry in the first years after slurry application, and mainly contributes to the long-term accumulation of organic N in soil together with part of the organic slurry N. Under humid temperate conditions the residual N effects of the manure can only be optimally utilised when soil is also covered by plants in the autumn, because a significant part of the residual N is released in the autumn, and there is a higher risk of N leaching losses on soils that receive cattle slurry regularly compared to soils receiving only mineral N fertilisers.  相似文献   

4.
The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.  相似文献   

5.
6.
A soil community food web model was used to improve the understanding of what factors govern the mineralisation of nutrients and carbon and the decay of dead organic matter. The model derives the rates of C and N mineralisation by organisms by splitting their uptake rate of food resources into a rate at which faeces or prey remains are added to detritus, a rate at which elements are incorporated into biomass, and a rate at which elements are released by organisms as inorganic compounds. The functioning of soil organisms in the mineralisation of C and N was modelled in the soil horizon of a Scots pine forest. The organic horizon was divided into three distinct layers, representing successive stages of decay, i.e. litter, fragmented litter, and humus. Each of the layers had a different, quantitative, biota composition. For each layer the annual C and N mineralisation rates were simulated and compared to observed C and N mineralisation rates from organic matter in stratified litterbags. Simulated C and N mineralisation was relatively close to measured losses of C and N, but the fit was not perfect. Discrepancies between the observed and predicted mineralisation rates are discussed in terms of variation in model parameter values of those organisms that showed the highest contribution to mineralisation rates. The measured, and by the model predicted, significant decrease in mineralisation rates down the profile was not explained by the biomass of the primary decomposers and only partly by the total food web biomass. Modelling results indicated that indirect effects of soil fauna, due to trophic interactions with their resources, are an important explanatory factor. In addition, the analyses suggest that community food web structure is an important factor in the regulation of nutrient mineralisation. The model provided the means to evaluate the contribution of functionally defined groups of organisms, structured in a detrital food web, to losses of C and N from successive decay stages.  相似文献   

7.
Van Schöll  L.  Van Dam  A.M.  Leffelaar  P.A. 《Plant and Soil》1997,188(2):211-219
The release of nitrogen from incorporated catch crop material in winter is strongly influenced by soil temperatures. A laboratory experiment was carried out to investigate this influence in the range of 1-15 °C. Samples of sandy soil or a mixture of sandy soil with rye shoots were incubated at 1-5-10-15 °C, and samples of sandy soil with rye roots were incubated at 5-10-15 °C. Concentrations of Nmin (NH4 +-N and NO3 --N) were measured after 0-1-2-4-7-10 weeks for the sandy soil and the sandy soil:rye shoot mixture, and after 0-2-7-10 weeks for the sandy soil:rye root mixture. At 1 °C, 20% of total organic N in the crop material had been mineralised after ten weeks, indicating that mineralisation at low temperatures is not negligible. Maximum mineralisation occurred at 15 °C; after ten weeks, it was 39% of total applied organic nitrogen from shoot and 35% from root material. The time course of mineralisation was calculated using an exponential decay function. It was found that the influence of temperature in the range 1-15 °C could be described by the Arrhenius equation, stating a linear increase of ln(k) with T-1, k being the relative mineralisation rate in day-1 and T the temperature (°C). A simulation model was developed in which decomposition, mineralisation and nitrification were modelled as one step processes, following first order kinetics. The relative decomposition rate was influenced by soil temperature and soil moisture content, and the mineralisation of N was calculated from the decomposition of C, the C to N ratio of the catch crop material and the C to N ratio of the microbial biomass. The model was validated first with the results of the experiment. The model was further validated with the results of an independent field experiment, with temperatures fluctuating between 3 and 20 °C. The simulated time course of mineralisation differed significantly from the experimental values, due to an underestimation of the mineralisation during the first weeks of incubation.  相似文献   

8.
Many mine spoils present at the surface of reclamation sites in the Lower Lusatian mining district are carboniferous substrates, i.e. contain geogenic organic matter. Depending on its susceptibility to microbial degradation, geogenic organic matter might influence the establishment of a carbon requiring microflora in mine spoils. As geogenic organic matter contains substantial amounts of organic nitrogen it is also a potential source for plant available N. The objective of the present study was to quantify C and N mineralisation and microbial biomass in geogenic organic matter present at reclamation sites in Lower Lusatia. We also studied, whether these properties can be influenced by raising the originally low pH to near neutral conditions. In laboratory incubation studies, the rates of CO2 evolution and net N mineralisation were determined in geogenic organic matter and carboniferous mine spoil with and without addition of lime. At the same time, microbial biomass carbon was estimated. As a reference, soil organic matter originating from the humus layer of a 60-year-old Pinus sylvestris stand was used. As indicated by the initial rates of C mineralisation, geogenic carbon was microbially available but to a lower extent than soil organic carbon. During incubation, C mineralisation remained constant or tended to increase with time, depending on the origin of the sample, while it decreased in soil organic matter. Unlike in soil organic matter, in geogenic organic matter and carboniferous mine spoil, C mineralisation was not consistently promoted by lime addition. Prior to incubation, microbial biomass in geogenic organic matter and carboniferous mine spoil was about 10-fold lower than in soil organic matter and tended to increase with incubation time while it decreased in soil organic matter. Similar to C mineralisation, microbial biomass in geogenic organic matter increased after liming, while it declined in carboniferous mine spoil immediately after lime addition. Rates of net N mineralisation were very low in geogenic organic matter and carboniferous mine spoil regardless of the length of incubation and could not be enhanced by raising the pH. It was concluded, that in mine spoils where accumulation of soil organic matter has not yet occurred, geogenic organic matter can be favourable for the establishment of a heterotrophic microflora. However, in the short term, geogenic matter is no source for plant available N in mine spoils. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Soil macrofauna and nitrogen on a sub-Antarctic island   总被引:4,自引:0,他引:4  
Summary The densities, diets and habitat preferences of the soil macrofaunal species on sub-Antarctic Marion Island (47°S, 38°E) are described. Their role in N cycling on the island is assessed, using a mire-grassland community as an example. Primary production on the island is high and this leads to a substantial annual requirement of nutrients by the vegetation. This requirement must almost wholly be met by mineralization of nutrient reserves in the organic matter. Rates of peat nitrogen mineralization mediated by microorganisms alone are much too low to account for rates of N uptake by the vegetation. Although soil macroinvertebrates, and bacteria represent a very small fraction of the total N pool, their interaction accounts for most of the peat N mineralization, as indicated by the amounts of inorganic N released into solution in microcosms. Extrapolation of the microcosm results shows that the soil macrofauna (mainly earthworms) stimulate the release of enough N from the mire-grassland peat to account for maximum N mineralization rates calculated from temporal changes in peat inorganic N levels and plant uptake during the most active part of the growing season. Considering that large numbers of mesoand microinvertebrates occur and must also contribute to nutrient mineralization, the soil faunal component is clearly of crucial importance to nutrient cycling on Marion Island. This is probably true of all sub-Antarctic islands.  相似文献   

10.
Two investigations into the translocation of temperate deciduous woodland soil were carried out in Kent, S. E. England, to study the effects on C and N mineralisation. In the field experiment, two translocation methods were compared: (i) placement, moving soil as an intact surface profile and (ii) loose-tipping in which the surface profile was mixed. These were implemented in winter both in situ (under the woodland canopy) and ex situ (soil moved to a receptor site outside woodland). In a second experiment, intact soil cores from the woodland site were subjected to different levels of disturbance in a polythene tunnel environment. Measurements of soil CO2 evolution and N mineralisation in both experiments showed a clear seasonal pattern, strongly influenced by temperature. Over a 7-month period, cumulative net N mineralisation in the field was greater in the woodland controls and placement treatments than loose-tipping treatments. Soil CO2 emissions were also greater in woodland control plots in the winter compared with ex situ treatments. Similarly, in the polythene tunnel environment, CO2 emissions were highest in the undisturbed soil cores, while N mineralisation varied with soil depth but, across the whole profile, was also greater in the controls. We conclude that the mixing of organic rich topsoil with mineral subsoil in clayey soil may have protected the organic residues on the clay-silt surfaces, resulting in overall lower mineralisation rates in the disturbed soil. These results indicate that N mineralisation does not necessarily increase when soil translocation operations are carried out on clayey soils in winter. Placement methods appeared the most likely to conserve soil mineralisation processes close to those in undisturbed woodland soil, but depend greatly on the success of maintaining the soil profile intact. It appears that, on clayey soils, the development of vegetation at the receptor site is more likely to be determined by alterations in the light, soil temperature and moisture regime that will occur in open conditions after woodland translocation than from increased soil N supply.  相似文献   

11.
Mineralisation of organic N is an important consideration when determining the annual amount of sewage sludge to be applied to agricultural soils. The mineralisation of sludge organic N was studied in two different textured soils (clayey and sandy soil) treated with aerobic and anaerobic sludge at two different rates (30 and 50 g sludge kg(-1) soil). The mineralisation of sludge organic N was determined during 20 weeks incubation period by analysis of inorganic N produced by a non-leached procedure. Sludge organic N mineralisation was influenced by soil type, organic N mineralisation being greater in the sandy soil (from 30% to 41%) than in the clayey soil (from 13% to 24%). Mineralisation rates decreased rapidly the first two weeks, followed by a slower decrease with time. Although total mineralisation increased with sludge addition rate, net mineralisation decreased with sludge addition rate, probably due to denitrificaton losses. The aerobically treated sludge gave higher mineralisation rates than the anaerobically treated one. The values of N0 and k for treated soils varied depending on the type of sludge and soil.  相似文献   

12.
A common finding in multiple CO(2) enrichment experiments in forests is the lack of soil carbon (C) accumulation owing to microbial priming of 'old' soil organic matter (SOM). However, soil C losses may also result from the accelerated turnover of 'young' microbial tissues that are rich in nitrogen (N) relative to bulk SOM. We measured root-induced changes in soil C dynamics in a pine forest exposed to elevated CO(2) and N enrichment by combining stable isotope analyses, molecular characterisations of SOM and microbial assays. We find strong evidence that the accelerated turnover of root-derived C under elevated CO(2) is sufficient in magnitude to offset increased belowground inputs. In addition, the C losses were associated with accelerated N cycling, suggesting that trees exposed to elevated CO(2) not only enhance N availability by stimulating microbial decomposition of SOM via priming but also increase the rate at which N cycles through microbial pools.  相似文献   

13.
We studied the effect of 15N labelling duration on the mineralisation and immobilisation of native and applied (residual) N in the humus layer of a Humo-Ferric Podzol. Ammonium sulphate, labelled with 15N, was applied to 1 m2 plots at a rate of 200 kg N ha–1. Fertiliser application was timed so that when samples were collected they had been labelled with 15N for 24 hours, 7 months and 31 months. In a 42-day aerobic incubation of the samples, net mineralisation of total and applied N was greatest in the 24-hr treatment followed by those from the 31-month treatment (p<0.05), indicating that immobilised 15N was more remineralisable in the samples with 15N labelled for 24 hours. The percentage of applied N found in the total N mineralised (net) ranged from 76.6 to 87.4%, 13.1 to 42.0% and 10.6 to 14.0% in samples from the 24-hr and 7- and 31-month treatments, respectively, showing reduced relative availability of residual N with increased labelling duration. The carbon mineralisation rate had the following order: 7-month > 24-hr > 31-month treatment. Net mineralisation of C and N was poorly correlated with each other (r=-0.02, p=0.89). Anaerobic incubation showed net mineralisation for the 7- and 31-month treatments but net immobilisation for the 24-hr treatment for both total and applied N, suggesting that immobilisation of inorganic N was encouraged when there was a large pool of mineral N in the soil. Both total and applied N in the extractable organic N fraction and in the N flushed after fumigation with chloroform had the following order: 24-hr > 7-month > 31-month treatment. The results confirmed that N fertiliser was being immobilised within hours after application by the humus material through the microbial population and that the immobilised N had a low mineralisation potential after one growing season.  相似文献   

14.
Following mixing of the surface soil to about 7.5 cm depth in the field, soil layers (0–2.5, 2.5–5, 5–10 and 10–15 cm) were separately incubated in the laboratory to determine the rate of development of net N mineralisation gradients through surface soil depth under fallow, wheat and subterranean clover plots. Gradients in net N mineralisation were compared with those observed in the field, and their contribution to the observed pH changes was investigated.Heterotrophic activity, and thus net N mineralisation, decreased only slightly with depth immediately after soil mixing. This pattern persisted over time in soil layers sampled from fallow plots. In contrast, within 1 growing season after soil mixing, heterotrophic activity and net N mineralisation decreased significantly with depth in soil sampled from wheat and clover plots. In 0–15 cm soil sampled from under senescing plants, 32–38% of CO2-C produced and net N mineralised originated from the surface 2.5 cm, while 52–56% originated from the surface 5 cm of soil. This resulted from an increase of pH and organic substrate concentration within the surface 2.5 cm of soil following plant residue return. Limitations of the in situ measurement of net N mineralisation in fallow soil was identified.Laboratory incubation studies showed that since most net N mineralisation occurred within the surface 2.5 cm of soil under senescing plants, nitrification and acidification were also concentrated at this depth. Despite this, compared to fallow soil, high potential acidification rates of 0–2.5 cm soil under senescing plants were not realised in the field due to the exposure to prolonged dry periods and moist-dry cycles. As a consequence, in the field the large magnitude of surface soil pH gradient which resulted from the return of alkaline plant residues was maintained over summer and autumn.  相似文献   

15.
Atwell  B.J.  Fillery  I. R. P.  McInnes  K. J.  Smucker  A. J. M. 《Plant and Soil》2002,241(2):259-269
Triticum aestivum L. (cv. Gutha), a short-season wheat, was grown to maturity in large monoliths of duplex soil (sand over sandy-clay) in a daylight phytotron mimicking field conditions. Either 15N-labelled ammonium sulphate ((NH4)2SO4) or urea was banded into the soil at a rate of 30 kg N ha–1: even though roots were about 20% heavier when grown in the presence of (NH4)2SO4 for 86 d (P<0.05), above-ground mass was not affected by the source of nitrogen. At four times through crop development up to grain-filling (50, 56, 70 and 86 d after sowing) shoots were labelled heavily with 14CO2 with two purposes. First, to trace `instantaneous' assimilate movement over 24 h, revealing relative sink strengths throughout plants. This, in turn, allowed precise measurements of live root mass and the proportion of recent photoassimilates deposited in the rhizosphere. Although root systems were sparse, even in surface soil layers, they were strong sinks for photoassimilates early in development (0–50 d), supporting the conversion of inorganic applied nitrogen (N) to soil organic forms. In the presence of roots, up to 28% of 15N was immobilised, whereas only 12% of labelled ammonium sulphate was immobilised in unplanted plots in spite of a favourable moisture status in both treatments. The effect of plants on rates of 15N transformation is ascribed to recently imported photoassimilates sustaining rhizosphere metabolism. Not more than 15% of recently fixed carbon imported by roots was recovered from the rhizoplane, suggesting that a highly localised microbial biomass supported vigorous immobilisation of soil N. Thus, more than twice as much applied N was destined for soil organic fractions as for root material. By these processes, root- and soil-immobilised N become substantial stores of applied N and together with shoot N accounted for all the applied N under dryland conditions.  相似文献   

16.
Direct uptake of organic nitrogen (ON) compounds, rather than inorganic N, by plant roots has been hypothesized to constitute a significant pathway for plant nutrition. The aim of this study was to test whether tomatoes (Solanum lycopersicum cv. Huying932) can take up ON directly from the soil by using 15NH4Cl, K15NO3, 1, 2-13C215N-glycine labeling techniques. The 13C and 15N in the plants increased significantly indicating that a portion of the glycine-N was taken up in the form of intact amino acids by the tomatoes within 48 h after injection into the soil. Regression analysis of excess 13C against excess 15N showed that approximately 21% of the supplied glycine-N was taken up intact by the tomatoes. Atom% excesses of 15N and 13C in the roots were higher than in any shoots. Results also indicated rapid turnover of amino acids (e.g., glycine) by soil microorganisms, and the poor competitive ability of tomatoes in absorbing amino acids from the soil solution. This implies that tomatoes can take up ON in an intact form from the soil despite the rapid turnover of organic N usually found under such conditions. Given the influence of climatic change and N pollution, further studies investigating the functional ecological implications of ON in horticultural ecosystems are warranted.  相似文献   

17.
The effect of heating and autoclaving on extractable nitrogen, N mineralisation and C metabolism was studied by heating five forest soils in the laboratory, simulating the range of effects of heat due to bushfire. Top soil (0–5 cm) was heated to 60 °C, 120 °C and 250 °C for 30 minutes; unheated soil was taken as a control. Samples of the soil heated to 250 °C were also inoculated with fresh soil to accelerate the recovery of the microbial population. Soil autoclaving was carried out as another heat treatment (moist heat). Soils were analysed immediately after heating and 3 times during seven months of incubation to assess immediate and longer-term effects of heating.Extractable N (organic and mineral forms) increased after heating to 120 °C, but decreased with further heating to 250 °C suggesting the volatilisation of N. N associated with microbial biomass diminished with heating and was barely detectable after the 250 °C treatment. Microbial biomass was an important source of soluble N in heated soils, and only partly recovered during subsequent long incubation. The amount of N mineralised during incubation depended on both soil and temperature. Nitrification did not occur when soils were heated to 250 °C (with or without inoculum), or after autoclaving, demonstrating the high sensitivity of nitrifiers to heat. At the beginning of soil incubation, respiration was enhanced in heated soils (250 °C, 250 °C inoculated) and autoclaved soils, but after 30 days of incubation respiration decreased to values either similar to or lower than those in control. This respiration pattern indicated that a fraction of labile C was released by heating, which was quickly mineralised within 30 days of incubation. These results demonstrate some effects of soil heating on C and N dynamics in forest soils.  相似文献   

18.
During three consecutive years with contrasting precipitation, we analysed the relationship between strategies of N conservation in the dominant plant functional groups (perennial grasses and evergreen shrubs) of the Patagonian Monte and the main components of N cycling in soil. We hypothesised that the different patterns of N conservation in perennial grasses and evergreen shrubs would have direct consequences for soil-N, inorganic-N release and microbial-N flush in soil. In autumn and late spring of 1999, 2000, and 2001, we assessed N and C concentration in green and senesced leaves, N-resorption efficiency and C/N ratio in senesced leaves of three dominant species of each plant functional group. In the soil associated with species of each plant functional group, we determined N and C concentration, potential-N mineralisation, and the associated microbial-N flush. Slow-growing evergreen shrubs exhibited low N-concentration in green leaves, high N-concentration in senesced leaves and low N-resorption from senescing leaves. In contrast, fast-growing perennial grasses showed high N-concentration in green leaves, low N-concentration in senesced leaves, and high N-resorption from senescing leaves. In evergreen shrubs, the maintenance of long-lasting green leaves with low N-concentration was the most important mechanism of N conservation. In contrast, perennial grasses conserved N through high N-resorption from senescing leaves. Soil-N concentration, potential N-mineralisation, and microbial-N flush in the soil were higher underneath evergreen shrubs than beneath perennial grasses. Observed differences, however, were lower than expected considering the quality of the organic matter supplied by each plant fuctional group to the soil. A possible reason for this relatively weak trend may be the capacity of evergreen shrubs to slow down N cycling through low leaf turnover and the presence of secondary compounds in leaves. Alternatively or simultaneously, the weak relationship between plant and soil N could result from shrubs being able to colonise N-poor soils while grasses may preferably occupy fertile microsites previously influenced by the decomposition pathway of evergreen shrubs. Differences between evergreen shrubs and perennial grasses in the mechanisms of plant N-conservation and in components of N cycling in the underlying soil were consistent over the three years of the study with differing precipitation. Inter-annual differences in N concentration in green leaves and in the microbial-N flush in soil indicate that during the wettest year fast-growing perennial grasses would outcompete slow-growing evergreen shrubs and microorganisms for N uptake.  相似文献   

19.
The effects of plant species which frequently occur in set-aside arable land on rhizosphere soil properties were assessed and compared to rhizosphere soil of Secale cereale (Rye) grown on an intensively managed arable soil (sandy Cambisol, Saxony, NE-Germany). On a 6 year old set-aside arable land rhizosphere soil samples were taken under Agropyron repens, Cirsium arvense and Rumex acetosa, the most frequent plant species, and under the leguminous plant species Vicia villosa. Phospholipid fatty acid analysis (PLFA) has been used to characterise the structure of the soil microbial community. Carbon mineralisation rates as well as gross (15N isotope pool dilution method) and net nitrogen mineralisation rates were determined as indicator of microbial activity. In intensive managed plots a rhizosphere effect was obvious in higher nutrient contents, gross N mineralisation rates and higher relative abundances of fungi and protozoa in Rye rhizosphere compared to bulk soil. Plant species altered rhizosphere microbial activity. Lowest gross N mineralisation and gross NH4 consumption rates were detected in Rye rhizosphere soil. Both rates revealed high positive correlations with dissolved organic carbon (extracted with KCl) and soil pH. The rhizosphere soil microbial communities of the three dominant plant species of the set-aside arable land (Agropyron, Cirsium, Rumex) were more similar to each other than to Vicia grown on the same set-aside plots and Rye grown on intensive managed plots. The highest number of non-identified PLFAs detected in Vicia rhizosphere soil suggests that microbial diversity was highest. Differences in quantity and quality of Vicia rhizodeposition, especially higher N contents, seem to induce the higher microbial activity and different microbial community structure. The rhizosphere soil of the dominant plant species on the set-aside and intensively managed arable land reflected the differences in bulk soil properties (obtained in a previous study) between the two management systems (e.g. pH, gross N mineralisation, metabolic quotient, PLFA marker characteristic of G? bacteria and fungi).  相似文献   

20.
Release of N, retention in soil, availability to a subsequent crop and total recovery of N derived from different15N-labelled plant materials decomposing in soil was investigated in two field experiments. In the first experiment five different plant species (white clover, red clover, subterranean clover, field bean and timothy) and in the second subterranean clover of different maturity (2,3 and 4 months old) were buried in mesh bags in the soil and allowed to decompose for 10 and 4 months, respectively. Most of the N released from the decaying plant materials was retained in the soil (27–46% of input). The subsequent crop (barley) took up 6–25% of input. The uptake correlated with the amount of N released from the decomposing material (r=0.936*, I experiment). Similar amounts of subterranean clover N were taken up by barley regardless to whether the material was buried in soil in the previous autumn or just before sowing of the crop. At the end of the experiments, the total recovery of the introduced plant-derived N varied between 89 and 102%. The results present evidence that the ability of the soil to retain plant-derived N is strong in comparison with the ability of the subsequent crop and different loss mechanisms to remove it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号