首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Porcine kidney BADH (pkBADH) follows a bi‐bi ordered mechanism in which NAD+ binds to the enzyme before the aldehyde. Previous studies showed that NAD+ induces complex and unusual conformational changes on pkBADH and that potassium is required to maintain its quaternary structure. The aim of this work was to analyze the structural changes in pkBADH caused by NAD+ binding and the role played by potassium in those changes. The pkBADH cDNA was cloned and overexpressed in Escherichia coli, and the protein was purified by affinity chromatography using a chitin matrix. The pkBADH/NAD+ interaction was analyzed by circular dichroism (CD) and by isothermal titration calorimetry (ITC) by titrating the enzyme with NAD+. The cDNA has an open reading frame of 1485 bp and encodes a protein of 494 amino acids, with a predicted molecular mass of 53.9 kDa. CD data showed that the binding of NAD+ to the enzyme caused changes in its secondary structure, whereas the presence of K+ helps maintain its α‐helix content. K+ increased the thermal stability of the pkBADH‐NAD+ complex by 5.3°C. ITC data showed that NAD+ binding occurs with different association constants for each active site between 37.5 and 8.6 μM. All the results support previous data in which the enzyme incubation with NAD+ provoked changes in reactivity, which is an indication of slow conformational rearrangements of the active site.  相似文献   

2.
The NAD+-dependent animal betaine aldehyde dehydrogenases participate in the biosynthesis of glycine betaine and carnitine, as well as in polyamines catabolism. We studied the kinetics of inactivation of the porcine kidney enzyme (pkBADH) by the drug disulfiram, a thiol-reagent, with the double aim of exploring the enzyme dynamics and investigating whether it could be an in vivo target of disulfiram. Both inactivation by disulfiram and reactivation by reductants were biphasic processes with equal limiting amplitudes. Under certain conditions half of the enzyme activity became resistant to disulfiram inactivation. NAD+ protected almost 100% at 10 μM but only 50% at 5 mM, and vice versa if the enzyme was pre-incubated with NAD+ before the chemical modification. NADH, betaine aldehyde, and glycine betaine also afforded greater protection after pre-incubation with the enzyme than without pre-incubation. Together, these findings suggest two kinds of active sites in this seemingly homotetrameric enzyme, and complex, unusual ligand-induced conformational changes. In addition, they indicate that, in vivo, pkBADH is most likely protected against disulfiram inactivation.  相似文献   

3.
The kinetic mechanism of betaine aldehyde dehydrogenase from leaves of the plant Amaranthus hypochondriacus is ordered with NAD+ adding first. NADH is a noncompetitive inhibitor against NAD+, which was interpreted before as evidence of an iso mechanism, in which NAD+ and NADH binds to different forms of free enzyme. With the aim of testing the proposed kinetic mechanism, we have now investigated the ability of NADH to form different complexes with the enzyme. By initial velocity and equilibrium binding studies, we found that the steady-state levels of E.glycine betaine are negligible, ruling out binding of NADH to this complex. However, NADH readily bind to E.betaine aldehyde, whose levels most likely are kinetically significant given its low dissociation constant. Also, NADH combined with E.NADH and E.NAD+. Finally, NADH was not able to revert the hydride transfer step, what suggest that there is no acyl-enzyme intermediate, i.e. the release of the reduced dinucleotide takes place after the deacylation step. Although formation of the complex E.NAD+.NADH would produce an uncompetitive effect in the inhibition of NADH against NAD+, the iso mechanism cannot be conclusively discarded.  相似文献   

4.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

5.
A decrease in the water content of the soil imposes a considerable stress on the voil-living bacteriumBacillus subtilis: water exits from the cells, resulting in decreased turgor and cessation of growth. Under these adverse circumstances,B. subtilis actively modulates the osmolarity of its cytoplasm to maintain turgor within acceptable boundaries. A rapid uptake of potassium ions via turgor-responsive transport systems is the primary stress response to a sudden increase in the external osmolarity. This is followed by the massive accumulation of the so-called compatible solutes, i.e., organic osmolytes that are highly congruous with cellular functions and hence can be accumulated by bacterial cells up to molar concentrations. Initially, the compatible solute proline is accumulated viade novo synthesis, butB. subtilis can also acquire proline from the environment by an osmoregulated transport system, OpuE. The preferred compatible solute ofB. subtilis is the potent osmoprotectant glycine betaine. This trimethylammonium compound can be taken up by the cell through three high-affinity transport systems: the multicomponent ABC transporters OpuA and OpuC, and the single-component transporter OpuD. The OpuC systems also mediates the accumulation of a variety of naturally occurring betaines, each of which can confer a considerable degree of osmotic tolerance. In addition to the uptake of glycine betaine from the environment,B. subtilis can also synthesize this osmoprotectant but it requires exogenously provided choline as its precursor. Two evolutionarily closely related ABC transport systems, OpuB and OpuC, mediate the uptake of choline which is then converted by the GbsA and GbsB enzymes in a two-step oxidation process into glycine betaine. Our data show that the intracellular accumulation of osmoprotectants is of central importance for the cellular defence ofB. subtilis against high osmolarity stress.  相似文献   

6.
The accumulation of glycine betaine to a high internal concentration by Escherichia coli cells in high osmolarity medium restores, within 1 h, a subnormal growth rate. The experimental results support the view that cell adaptation to high osmolarity involves a decrease in the initiation frequency of DNA replication via a stringent response; in contrast, glycine betaine transport and accumulation could suppress the stringent response within 1–2 min and restore a higher initiation frequency. High osmolarity also triggers the cells to lengthen, perhaps via an inhibition of cellular division; glycine betaine also reverses this process. It is inferred that turgor could control DNA replication and cell division in two separate ways. Glycine betaine action is not mediated by K+ ions as the internal level of K+ ions is not modified significantly following glycine betaine accumulation.  相似文献   

7.
The foodborne pathogenStaphylococcus aureus is distinguished by its ability to grow within environments of extremely high osmolarity (e.g., foods with low water activity values). In the present study, we examined the accumulation of intracellular organic solutes withinS. aureus strain ATCC 12600 when cells were grown in a complex medium containing high concentrations of NaCl. Consistent with previous reports [Measures JC (1975) Nature 257:398–400; Koujima I, et al. (1978) Appl Environ Microbiol 35:467–470; and Anderson CB, Witter LD (1982) Appl Environ Microbiol 43:1501–1503], intracellular proline was found to accumulate to high concentrations. However, NMR spectroscopy of cell extracts revealed glycine betaine to be the predominant intracellular organic solute accumulated within cells grown at high osmolarity. In additional experiments, we examined the growth rate ofS. aureus in a defined medium of high osmolarity and found it to be stimulated significantly by the presence of either exogenous proline or glycine betaine. Highest growth rates were obtained when the defined medium was supplemented with glycine betaine.  相似文献   

8.
Glycine betaine stimulates the growth rate of various bacteria in high osmolarity medium. In our studies, glycine betaine stimulated the growth rate of Escherichia coli K 12 in minimal medium with normal osmolarity at alkaline pH (pH 8.2). Betaine also caused a reduction in the intracellular pools of K+ and low molecular weight thiols in E. coli growing both in medium with high osmolarity and at alkaline pH. These effects of betaine were absent at pH 7.0. In cells growing in high osmolarity medium, 10 mM sodium acetate or 10 M N-ethylmaleimide reduced expression of the osmosensitive gene proU to the same extent as treatment with betaine; however, under these conditions, sodium acetate and N-ethylmaleimide did not stimulate the growth of E. coli. It is proposed that low molecular weight thiols and intracellular pH may participate in the response of E. coli to betaine.  相似文献   

9.
Biosynthesis of glycine betaine from simple carbon sources as compatible solute is rare among aerobic heterotrophic eubacteria, and appears to be almost exclusive to the non-halophilic and slightly halophilic phototrophic cyanobacteria. Although Synechococcus sp. WH8102 (CCMP2370), a unicellular marine cyanobacterium, could grow up to additional 2.5% (w/v) NaCl in SN medium, natural abundance 13C nuclear magnetic resonance spectroscopy identified glycine betaine as its major compatible solute. Intracellular glycine betaine concentrations were dependent on the osmolarity of the growth medium over the range up to additional 2% NaCl in SN medium, increasing from 6.8 ± 1.5 to 62.3 ± 5.5 mg/g dw. The ORFs SYNW1914 and SYNW1913 from Synechococcus sp. WH8102 were found as the homologous genes coding for glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase, heterologously over-expressed respectively as soluble fraction in Escherichia coli BL21(DE3)pLysS and purified by Ni-NTA His•bind resins. Their substrate specificities and the values of the kinetic parameters were determined by TLC and 1H NMR spectroscopy. RT-PCR analysis revealed that the two ORFs were both transcribed in cells of Synechococcus sp. WH8102 growing in SN medium without additional NaCl, which confirmed the pathway of de novo synthesizing betaine from glycine existing in these marine cyanobacteria.  相似文献   

10.
Summary Osmoregulation of Brevibacterium lactofermentum was examined. Exogenous glycine betaine was found to stimulate the growth rate of the bacterium in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte, or non-electrolyte. The bacterium did not utilize glycine betaine as a sole carbon source or nitrogen source, or degrade it even in complete medium. The changes in intracellular proline and glycine betaine concentrations were measured in media of different osmolarity. Brevibacterium lactofermentum grown in media without glycine betaine did not accumulate it, but synthesized several hyndred millimoles of proline inside the cells. On the other hand, when glycine betaine was added to the growth media, it accumulated in the cell instead of proline. These data indicate that glycine betaine is an osmoprotective compound for B. lactofermentum. Offprint requests to: Yoshio Kawahara  相似文献   

11.
Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline betaine aldehyde glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and K m for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.Abbreviations BADH betaine aldehyde dehydrogenase - bp base pairs - FAB-MS fast atom bombardment-mass spectrometry - GAPDH NADP-linked glyceraldehyde-3-phosphate dehydrogenase We thank Dr. G. An for the gift of the vector pGA643 and Mr. Sylvain Lebeurier for help in maintaining plants. This work was supported, in part, by grants from the Natural Sciences and Engineering Research Council of Canada, the Rockefeller Foundation, and the U.S. Department of Agriculture, and by gifts from CIBAGEIGY Biotechnology.  相似文献   

12.
The osmoregulatory NAD-dependent betaine aldehyde dehydrogenase (betaine aldehyde: NAD oxidoreductase, EC 1.2.1.8), of Escherichia coli, was purified to apparent homogeneity from an over-producing strain carrying the structural gene for the enzyme (betB) on the plasmid vector pBR322. Purification was achieved by ammonium sulfate fractionation of disrupted cells, followed by affinity chromatography on 5′-AMP Sepharose, gel-filtration and ion-exchange chromatography. The amino acid composition was determined. The dehydrogenase was found to be a tetramer with identical 55 kDa subunits. Both NAD and NADP could be used as cofactor for the dehydrogenase, but NAD was preferred. The dehydrogenase was highly specific for betaine aldehyde. None of the analogs tested functioned as a substrate, but several inhibited the enzyme competitively. The enzyme was not activated by salts at concentrations encountered during osmotic upshock, but it was salt tolerant, retaining 50% of maximal activity at 1.2 M K+. It is inferred that salt tolerance is an essential property for an enzyme participating in the cellular synthesis of an osmoprotectant.  相似文献   

13.
Summary The growth rate, sugar consumption rate, and production rate of an l-lysine producing Brevibacterium lactofermentum mutant were stimulated by addition of exogenous glycine betaine. Glycine betaine stimulated the growth rate especially in media of inhibitory osmotic stress, and the stimulation was independent of any specific solute. Therefore growth stimulation by glycine betaine was considered to be an osmoprotective effect. A strong enhancement of the sugar consumption rate and the l-lysine production rate was observed even with resting cells under osmotic stress as well as in a fermentation with growing cells. These data indicated that the osmoprotective effects of glycine betaine on l-lysine production can be independent of protein synthesis. Offprint requests to: Yoshio Kawahara  相似文献   

14.
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.  相似文献   

15.
The proU locus of Escherichia coli encodes a high-affinity, binding-protein-dependent transport system (ProU) for the osmoprotectant glycine betaine. We cloned this locus into both low-copy-number lambda vectors and multicopy plasmids and demonstrated that these clones restore osmotically controlled synthesis of the periplasmic glycine betaine binding protein (GBBP) and the transport of glycine betaine in a delta (proU) strain. These clones allowed us to investigate the influence of osmolarity on ProU transport activity independent of the osmotically controlled expression of proU. ProU activity was strongly stimulated by a moderate increase in osmolarity and was partially inhibited by high osmolarity. This activity profile differs from the profile of the osmotically regulated proU expression. The proU locus is organized in an operon and the position of the structural gene (proV) for GBBP is defined using a minicell system. We determined that at least three proteins (in addition to GBBP) are encoded by the proU locus. We also investigated the permeation of glycine betaine across the outer membrane. At low substrate concentration (0.7 microM), permeation of glycine betaine was entirely dependent on the OmpF and OmpC porins.  相似文献   

16.
Acinetobacter baumannii is outstanding for its ability to cope with low water activities which significantly contributes to its persistence in hospital environments. The vast majority of bacteria are able to prevent loss of cellular water by amassing osmoactive compatible solutes or their precursors into the cytoplasm. One such precursor of an osmoprotectant is choline that is taken up from the environment and oxidized to the compatible solute glycine betaine. Here, we report the identification of the osmotic stress operon betIBA in A. baumannii. This operon encodes the choline oxidation pathway important for the production of the solute glycine betaine. The salt-sensitive phenotype of a betA deletion strain could not be rescued by addition of choline, which is consistent with the role of BetA in choline oxidation. We found that BetA is a choline dehydrogenase but also mediates in vitro the oxidation of glycine betaine aldehyde to glycine betaine. BetA was found to be associated with the membrane and to contain a flavin, indicative for BetA donating electrons into the respiratory chain. The choline dehydrogenase activity was not salt dependent but was stimulated by the compatible solute glutamate.  相似文献   

17.
N Riou  M C Poggi  D Le Rudulier 《Biochimie》1991,73(9):1187-1193
Azospirillum brasilense is able to use glycine betaine as a powerful osmoprotectant; the uptake of this compound is strongly stimulated by salt stress, but significantly reduced by cold osmotic shock. Non-denaturing PAGE in the presence of [methyl-14C] glycine betaine and autoradiography demonstrated the presence of one glycine betaine-binding protein (GBBP) in periplasmic shock fluid obtained from high-osmolarity-grown cells. The binding activity was absent in periplasmic fractions from cells grown at low osmolarity. SDS-PAGE analysis showed that the osmotically inducible GBBP has an apparent molecular weight of 32,000. The isoelectric point was between 5.9 and 6.6, as determined by isoelectric focusing. This protein bound glycine betaine with high affinity (KD of 3 microM), but had no affinity for either other betaines (proline betaine, gamma-butyrobetaine, pipecolate betaine, trigonelline, homarine) or related compounds (choline, glycine betaine aldehyde, glycine and proline). Optimum binding activity occurred at pH 7.0 to 7.5, and was not altered whether or not the binding assays were done at low or high osmolarity. Immunoprecipitation and Western blotting showed that immunoadsorbed anti-GBBP antibody from E coli cross-reacted with the GBBP produced by A brasilense cells grown at high osmolarity.  相似文献   

18.
19.
20.
In the coryneform Brevibacterium linens, ectoine constitutes the major intracellular solute accumulated under elevated medium osmolarity. Here we report that exogenously supplied proline, choline, glycine betaine, and even ectoine, protected bacterial cells against deleterious effects of a hyperosmotic constraint (i.e. 1.5 M NaCl). In all cases, a significant improvement of growth was observed; in parallel, intracellular osmolyte pools composed mainly of glutamate and ectoine substantially increased, either with added glycine betaine (under limiting supply) or with proline. However, these two osmoprotectants behaved differently: glycine betaine acted as a genuine osmoprotectant, whereas proline was accumulated only transiently and participated actively in the biosynthesis of glutamate, ectoine, and trehalose. The strategy developed by B. linens cells allows the proposal of a novel role for proline in the osmoprotection process through its conversion to the apparently preferred endogenous osmolyte ectoine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号