首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epitope and mimotope for an antibody to the Na, K-ATPase.   总被引:2,自引:1,他引:1       下载免费PDF全文
The epitope of a monoclonal antibody specific for the alpha 2 isoform of the Na,K-ATPase was determined and its accessibility in native enzyme was examined. Protein fragmentation with N-chlorosuccinimide, formic acid, trypsin, and leucine aminopeptidase indicated binding near the Na,K-ATPase N-terminus but did not unambiguously delineate the extent of the epitope. The ability of the antibody to bind to denatured enzyme made it a good candidate for screening a random peptide library displayed on M13 phage, but the consensus sequence that emerged was not found in the Na,K-ATPase, Full-length cDNA for the Na,K-ATPase was randomly fragmented and cloned into beta-galactosidase to create a lambda gt11 expression library; screening with the antibody yielded a set of overlaps spanning 23 amino acids at the N-terminus. Chimeras of Na,K-ATPase alpha 1 and alpha 2 narrowed down the epitope to 14-19 amino acids. The antibody did not recognize fusion proteins constructed with shorter segments of this epitope. It did recognize a fusion protein containing the M13 library consensus sequence, however, indicating that this sequence, which is rich in proline and hydrophobic amino acids (FPPNFLFPPPP), was a mimotope. The natural epitope, unique to the Na,K-ATPase alpha 2 isoform, was GREYSPAATTAENG. Reconstitution of antibody binding in a foreign context such as M13 PIII protein or beta-galactosidase thus required a relatively large number of amino acids, indicating that antibody mapping approaches must allow for epitopes of significant size. The epitope was accessible in native enzyme and exposed on the cytoplasmic side, documenting the surface exposure of a stretch of amino acids at the N-terminus, where the Na,K-ATPase isoforms differ most.  相似文献   

2.
In this study, several methodological aspects of the pepscan strategy have been investigated with the objective to delineate the amino acid sequences of peptide segments that form the epitopes of thyrotropin beta-subunit (TSHbeta) recognised by monoclonal antibodies. Hitherto, the pepscan strategy has found application as an effective method to identify linear sequence regions that constitute contiguous epitopes within the primary structure of some proteins. However, with heterodimeric glycoprotein hormones and their subunits such as TSHbeta, as well as for many other globular proteins, the majority of the epitopes recognised by anti-protein antibodies will be derived from discontinuous segments that collectively form the epitope. In these cases the pepscan technique will only be able to identify individual segments of the overall discontinuous epitope site as linear peptides, some of which may interact with relatively low binding affinity. Consequently, additional attention must thus be given to the optimisation of the specific binding and detection conditions. Knowledge of the structures of these peptide segments can, however, provide a valuable basis to develop peptide structures that more closely mimic the topographical features of the epitope in the mature, folded protein. In an attempt to identify functional segments involved in the epitopes recognised by the anti-hTSH monoclonal antibodies, mAb279 and mAb299, the impact of various experimental conditions on the efficacy of the pepscan strategy has been investigated. The strategy involved the synthesis of a series of overlapping pin-bound octapeptides with amino acid sequences derived from the TSH beta-subunit. The ability of these pin-bound octapeptides to bind to either mAb279 or mAb299 in ELISA-based assay was then determined under conditions involving different concentrations of the primary and/or secondary antibodies, and changes in buffer composition, incubation times and washing procedures. Theresults of this study illustrate some of the constraints and limitations of the pepscan technique when used to delineate discontinuous epitopes of globular proteins, as well as providing insight into potential avenues to optimise and refine this method.  相似文献   

3.
Mass spectrometry has evolved as a technique suitable for the characterization of peptides and proteins beyond their linear sequence. The advantages of mass spectrometric sample analysis are high sensitivity, high mass accuracy, rapid analysis time and low sample consumption. In epitope mapping, the molecular structure of an antigen (the epitope or antigenic determinant) that interacts with the paratope (recognition surface) of the antibody is identified. To obtain information on linear, conformational and/or discontinuous epitopes, various approaches have been developed in conjunction with mass spectrometry. These methods include limited proteolysis and epitope footprinting, epitope excision and epitope extraction for linear epitopes and probing the surface accessibility of residues by differential chemical modifications of specific amino acid side chains or by differential hydrogen/deuterium exchange of the protein backbone amides for conformational and discontinuous epitopes. Epitope mapping by mass spectrometry is applicable in basic biochemical research and, with increasing robustness, should soon find its implementation in routine clinical diagnosis.  相似文献   

4.
Mass spectrometry has evolved as a technique suitable for the characterization of peptides and proteins beyond their linear sequence. The advantages of mass spectrometric sample analysis are high sensitivity, high mass accuracy, rapid analysis time and low sample consumption. In epitope mapping, the molecular structure of an antigen (the epitope or antigenic determinant) that interacts with the paratope (recognition surface) of the antibody is identified. To obtain information on linear, conformational and/or discontinuous epitopes, various approaches have been developed in conjunction with mass spectrometry. These methods include limited proteolysis and epitope footprinting, epitope excision and epitope extraction for linear epitopes and probing the surface accessibility of residues by differential chemical modifications of specific amino acid side chains or by differential hydrogen/deuterium exchange of the protein backbone amides for conformational and discontinuous epitopes. Epitope mapping by mass spectrometry is applicable in basic biochemical research and, with increasing robustness, should soon find its implementation in routine clinical diagnosis.  相似文献   

5.
Presently X-ray crystallography of protein-antibody complexes is still the most direct way of identifying B-cell epitopes. The objective of this study was to assess the potential of a computer-based epitope mapping tool (EMT) using antigenic amino acid motifs as a fast alternative in a number of applications not requiring detailed information, e.g. development of pharmaceutical proteins, vaccines and industrial enzymes. Using Gal d 4 as a model protein, the EMT was capable of identifying, in the context of the folded protein, amino acid positions known to be involved in antibody binding. The high sensitivity and positive predictive value of the EMT as well as the relevance of the structural associations suggested by the EMT indicated the existence of amino acid motifs that are likely to be involved in antigenic determinants. In addition, differential mapping revealed that sensitivity and positive predictive value were dependent on the minimum relative surface accessibility (RSA) of the amino acids included in the mapping, demonstrating that the EMTs accommodated for the fact that epitopes are three-dimensional entities with various degrees of accessibility. The comparison with existing prediction scales demonstrated the superiority of the EMT with respect to physico-chemical scales. The mapping tool also performed better than the available structural scales, but the significance of the differences remains to be established. Thus, the EMT has the potential of becoming a fast and simple alternative to X-ray crystallography for predicting structural antigenic determinants, if detailed epitope information is not required.  相似文献   

6.
Monoclonal antibodies that bind native protein can generate considerable information about structure/function relationships, but identification of their epitopes can be problematic. Previously, monoclonal antibody M8-P1-A3 has been shown to bind to the catalytic (alpha) subunit of the Na+,K(+)-ATPase holoenzyme and the synthetic peptide sequence 496-HLLVMK*GAPER-506, which includes Lys 501 (K*), the major site for fluorescein-5'-isothiocyanate labeling of the Na+,K(+)-ATPase. This sequence region of alpha is proposed to comprise a portion of the enzyme's ATP binding domain (Taylor, W. R. & Green, N. W., 1989, Eur. J. Biochem. 179, 241-248). In this study we have determined M8-P1-A3's ability to recognize the alpha-subunit or homologous E1E2-ATPase proteins from different species and tissues in order to deduce the antibody's epitope. In addition the bacteriophage random peptide or "epitope" library, recently developed by Scott and Smith (1990, Science 249, 386-390) and Devlin et al. (Devlin, J. J., Panganiban, L. C., & Devlin, P. E., 1990, Science 249, 404-406), has served as a convenient technique to confirm the species-specificity mapping data and to determine the exact amino acid requirements for antibody binding. The M8-P1-A3 epitope was found to consist of the five amino acid 494-PRHLL-498 sequence stretch of alpha, with residues PRxLx being critical for antibody recognition.  相似文献   

7.
The antigenic epitopes of the myohemerythrin (MHr) molecule have been studied extensively. The critical amino acid residues responsible for its immune recognition have been identified by using synthetic peptides and the technique of epitope scanning. To assess the true relevance of these techniques for determining the molecular mechanism of antigenic recognition and immunogenicity, the results obtained with isolated peptides should be tested in the context of the folded protein. To this end, we have designed and constructed a synthetic MHr gene, in modular form, which will allow subsequent alterations of nucleotide sequence encoding epitopes of interest. We have produced the recombinant protein at high level, and have shown by several criteria that it possesses the chemical, physical and immunological properties of the native worm protein. Thus, we have developed a valuable system for detailed immunological studies of the structure and chemistry required for antibody binding to protein.  相似文献   

8.
9.
A universal platform for efficiently mapping antibody epitopes would be of great use for many applications, ranging from antibody therapeutic development to vaccine design. Here we tested the feasibility of using a random peptide microarray to map antibody epitopes. Although peptide microarrays are physically constrained to ~10(4) peptides per array, compared with 10(8) permitted in library panning approaches such as phage display, they enable a much more high though put and direct measure of binding. Long (20 mer) random sequence peptides were chosen for this study to look at an unbiased sampling of sequence space. This sampling of sequence space is sparse, as an exact epitope sequence is unlikely to appear. Commercial monoclonal antibodies with known linear epitopes or polyclonal antibodies raised against engineered 20-mer peptides were used to evaluate this array as an epitope mapping platform. Remarkably, peptides with the most sequence similarity to known epitopes were only slightly more likely to be recognized by the antibody than other random peptides. We explored the ability of two methods singly and in combination to predict the actual epitope from the random sequence peptides bound. Though the epitopes were not directly evident, subtle motifs were found among the top binding peptides for each antibody. These motifs did have some predictive ability in searching for the known epitopes among a set of decoy sequences. The second approach using a windowing alignment strategy, was able to score known epitopes of monoclonal antibodies well within the test dataset, but did not perform as well on polyclonals. Random peptide microarrays of even limited diversity may serve as a useful tool to prioritize candidates for epitope mapping or antigen identification.  相似文献   

10.
The conditions and the specificity by which an antibody binds to its target protein in routinely fixed and embedded tissues are unknown. Direct methods, such as staining in a knock-out animal or in vitro peptide scanning of the epitope, are costly and impractical. We aimed to elucidate antibody specificity and binding conditions using tissue staining and public genomic and immunological databases by comparing human and pig—the farmed mammal evolutionarily closest to humans besides apes. We used a database of 146 anti-human antibodies and found that antibodies tolerate partially conserved amino acid substitutions but not changes in target accessibility, as defined by epitope prediction algorithms. Some epitopes are sensitive to fixation and embedding in a species-specific fashion. We also find that half of the antibodies stain porcine tissue epitopes that have 60% to 100% similarity to human tissue at the amino acid sequence level. The reason why the remaining antibodies fail to stain the tissues remains elusive. Because of its similarity with the human, pig tissue offers a convenient tissue for quality control in immunohistochemistry, within and across laboratories, and an interesting model to investigate antibody specificity.  相似文献   

11.
Antibodies raised against the synthetic peptide corresponding to the carboxy-terminal 24 amino acids (305-328) of the heavy chain of the hemagglutinin molecule of influenza virus A/X-31 (H3) bind this peptide at three antigenic sites. These sites were identified by assaying binding of polyclonal BALB/c mouse antipeptide sera to the complete set of all possible di-, tri, tetra-, penta-, hexa-, hepta-, and octapeptides homologous with the 24-residue sequence. Individual epitopes were defined and essential residues identified by testing the binding of monoclonal antibodies to sets of peptide analogues in which every one of the homologous residues was replaced in turn by each of the 19 alternative genetically coded amino acids. The immunodominant epitope was shown to be a linear sequence of five amino acids, 314LKLAT318. Replacement of any one of these residues with any other amino acid resulted in loss of antibody binding, indicating that all five are essential to the interaction and that they are probably contact residues. Another antigenic site contains at least two overlapping epitopes: polyclonal sera recognize predominantly an epitope or epitopes encompassed by the linear sequence 320MRNVPEKQT328, whereas the epitope defined by a particular monoclonal antibody comprises the seven amino acids 322NVPEKQT328, of which N322, E325, and Q327 were implicated as contact residues.  相似文献   

12.
A method for the discovery of the structure of conformational discontinuous epitopes of monoclonal antibodies (mAbs) is described. The mAb is used to select specific phages from combinatorial phage-display peptide libraries that in turn are used as an epitope-defining database that is applied via a novel computer algorithm to analyze the crystalline structure of the original antigen. The algorithm is based on the following: (1) Most contacts between a mAb and an antigen are through side-chain atoms of the residues. (2) In the three-dimensional structure of a protein, amino acid residues remote in linear sequence can juxtapose to one another through folding. (3) Tandem amino acid residues of the selected phage-displayed peptides can represent pairs of juxtaposed amino acid residues of the antigen. (4) Contact residues of the epitope are accessible to the antigen surface. (5) The most frequent tandem pairs of amino acid residues in the selected phage-displayed peptides can reflect pairs of juxtaposed amino acid residues of the epitope. Application of the algorithm enabled prediction of epitopes. On the basis of these predictions, segments of an antigen were used to reconstitute an antigenic epitope mimetic that was recognized by its original mAb.  相似文献   

13.
To study common and variant specific antigenic determinants on variant surface glycoproteins from Trypanosoma brucei, we have selected four serologically cross-reacting variant populations. Monoclonal antibodies were raised against the purified variant surface glycoproteins from each variant trypanosome population. Six monoclonal antibodies bind to segmental epitopes and one binds to a topographically assembled epitope. Amino acid compositions of these variant surface glycoproteins reveal striking conservation of certain residues including cysteine and charged amino acids. We also find that all seven monoclonal antibodies used in this study bind to protein determinants not exposed on the surface of the living trypanosome. Only one monoclonal antibody exhibits homologous specificity, while the remainder display cross-reactivity for three or all four variant surface glycoproteins. In addition, polyacrylamide gel electrophoresis peptide mapping and Western blots probed with each monoclonal antibody reveal significant peptide homologies. Furthermore, two pairs of monoclonal antibodies recognize two epitopes that are possibly immunodominant. The significance of these findings is discussed in terms of the structural similarities and differences among variant surface glycoproteins.  相似文献   

14.
Dengue viruses (DENVs) are emerging, mosquito-borne flaviviruses which cause dengue fever and dengue hemorrhagic fever. The DENV complex consists of 4 serotypes designated DENV1-DENV4. Following natural infection with DENV, individuals develop serotype specific, neutralizing antibody responses. Monoclonal antibodies (MAbs) have been used to map neutralizing epitopes on dengue and other flaviviruses. Most serotype-specific, neutralizing MAbs bind to the lateral ridge of domain III of E protein (EDIII). It has been widely assumed that the EDIII lateral ridge epitope is conserved within each DENV serotype and a good target for vaccines. Using phylogenetic methods, we compared the amino acid sequence of 175 E proteins representing the different genotypes of DENV3 and identified a panel of surface exposed amino acids, including residues in EDIII, that are highly variant across the four DENV3 genotypes. The variable amino acids include six residues at the lateral ridge of EDIII. We used a panel of DENV3 mouse MAbs to assess the functional significance of naturally occurring amino acid variation. From the panel of antibodies, we identified three neutralizing MAbs that bound to EDIII of DENV3. Recombinant proteins and naturally occurring variant viruses were used to map the binding sites of the three MAbs. The three MAbs bound to overlapping but distinct epitopes on EDIII. Our empirical studies clearly demonstrate that the antibody binding and neutralization capacity of two MAbs was strongly influenced by naturally occurring mutations in DENV3. Our data demonstrate that the lateral ridge “type specific” epitope is not conserved between strains of DENV3. This variability should be considered when designing and evaluating DENV vaccines, especially those targeting EDIII.  相似文献   

15.
The smaller isoform of the GABA-synthesizing enzyme, glutamic acid decarboxylase 65 (GAD65), is unusually susceptible to becoming a target of autoimmunity affecting its major sites of expression, GABA-ergic neurons and pancreatic beta-cells. In contrast, a highly homologous isoform, GAD67, is not an autoantigen. We used homolog-scanning mutagenesis to identify GAD65-specific amino acid residues which form autoreactive B-cell epitopes in this molecule. Detailed mapping of 13 conformational epitopes, recognized by human monoclonal antibodies derived from patients, together with two and three-dimensional structure prediction led to a model of the GAD65 dimer. GAD65 has structural similarities to ornithine decarboxylase in the pyridoxal-5'-phosphate-binding middle domain (residues 201-460) and to dialkylglycine decarboxylase in the C-terminal domain (residues 461-585). Six distinct conformational and one linear epitopes cluster on the hydrophilic face of three amphipathic alpha-helices in exons 14-16 in the C-terminal domain. Two of those epitopes also require amino acids in exon 4 in the N-terminal domain. Two distinct epitopes reside entirely in the N-terminal domain. In the middle domain, four distinct conformational epitopes cluster on a charged patch formed by amino acids from three alpha-helices away from the active site, and a fifth epitope resides at the back of the pyridoxal 5'-phosphate binding site and involves amino acid residues in exons 6 and 11-12. The epitopes localize to multiple hydrophilic patches, several of which also harbor DR*0401-restricted T-cell epitopes, and cover most of the surface of the protein. The results reveal a remarkable spectrum of human autoreactivity to GAD65, targeting almost the entire surface, and suggest that native folded GAD65 is the immunogen for autoreactive B-cells.  相似文献   

16.
Epitope mapping studies aim to identify the binding sites of antibody-antigen interactions to enhance the development of vaccines, diagnostics and immunotherapeutic compounds. However, mapping is a laborious process employing time- and resource-consuming ‘wet bench’ techniques or epitope prediction software that are still in their infancy. For polymorphic antigens, another challenge is characterizing cross-reactivity between epitopes, teasing out distinctions between broadly cross-reactive responses, limited cross-reactions among variants and the truly type-specific responses. A refined understanding of cross-reactive antibody binding could guide the selection of the most informative subsets of variants for diagnostics and multivalent subunit vaccines. We explored the antibody binding reactivity of sera from human patients and Peromyscus leucopus rodents infected with Borrelia burgdorferi to the polymorphic outer surface protein C (OspC), an attractive candidate antigen for vaccine and improved diagnostics for Lyme disease. We constructed a protein microarray displaying 23 natural variants of OspC and quantified the degree of cross-reactive antibody binding between all pairs of variants, using Pearson correlation calculated on the reactivity values using three independent transforms of the raw data: (1) logarithmic, (2) rank, and (3) binary indicators. We observed that the global amino acid sequence identity between OspC pairs was a poor predictor of cross-reactive antibody binding. Then we asked if specific regions of the protein would better explain the observed cross-reactive binding and performed in silico screening of the linear sequence and 3-dimensional structure of OspC. This analysis pointed to residues 179 through 188 the fifth C-terminal helix of the structure as a major determinant of type-specific cross-reactive antibody binding. We developed bioinformatics methods to systematically analyze the relationship between local sequence/structure variation and cross-reactive antibody binding patterns among variants of a polymorphic antigen, and this method can be applied to other polymorphic antigens for which immune response data is available for multiple variants.  相似文献   

17.
Glutamate decarboxylase (GAD) is an autoantigen associated with the autoimmune disorders Type‐1 diabetes (T1D) and stiff‐person syndrome (SPS). The protein, being an essential enzyme involved in the production of the inhibitory neurotransmitter γ‐aminobutyric acid, exists in two isoforms, GAD67 and GAD65. Both isoforms may be targeted by autoantibodies in SPS and T1D patients, although SPS primarily is associated with the presence of GAD67 autoantibodies, whereas T1D mainly is associated with the presence of GAD65 autoantibodies. In this study, we describe antibody reactivity to overlapping GAD67 peptides covering the complete protein sequence by modified peptide enzyme‐linked immunosorbent assay in order to identify potential GAD67 epitopes using two monoclonal antibodies (mAbs). Both GAD67 mAbs showed reactivity to linear epitopes located at the N‐terminal end of GAD67. The epitopes of GAD mAb 1 and 2 were identified as the amino acid sequences NAGADPNTTN and TETDFSNLF, respectively, corresponding to amino acids 14–23 and 91–99. Fine mapping of the epitopes revealed that antibody reactivity was related to amino acid side‐chain functionality, rather than amino acid side‐chain specificity. Additionally, results suggested that non‐contact amino acids in the epitope structure were essential for antibody reactivity. The exact role of these amino acids remains to be determined, but they are thought to be involved in backbone hydrogen bonds or stabilization of the epitope structure. As only limited knowledge is available in relation to antigenic regions of GAD67, this study contributes to characterization of GAD67 epitopes and may be a first step in the development of peptide‐based therapeutics against SPS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
In current work, we used recombinant OspC protein derived from B. afzelii strain BRZ31 in the native homodimeric fold for mice immunization and following selection process to produce three mouse monoclonal antibodies able to bind to variable parts of up to five different OspC proteins. Applying the combination of mass spectrometry assisted epitope mapping and affinity based theoretical prediction we have localized regions responsible for antigen‐antibody interactions and approximate epitopes' amino acid composition. Two mAbs (3F4 and 2A9) binds to linear epitopes located in previously described immunogenic regions in the exposed part of OspC protein. The third mAb (2D1) recognises highly conserved discontinuous epitope close to the ligand binding domain 1.  相似文献   

19.
We previously defined eight groups of monoclonal antibodies which react with distinct epitopes of herpes simplex virus glycoprotein D (gD). One of these, group VII antibody, was shown to react with a type-common continuous epitope within residues 11 to 19 of the mature glycoprotein (residues 36 to 44 of the predicted sequence of gD). In the current investigation, we have localized the sites of binding of two additional antibody groups which recognize continuous epitopes of gD. The use of truncated forms of gD as well as computer predictions of secondary structure and hydrophilicity were instrumental in locating these epitopes and choosing synthetic peptides to mimic their reactivity. Group II antibodies, which are type common, react with an epitope within residues 268 to 287 of the mature glycoprotein (residues 293 to 312 of the predicted sequence). Group V antibodies, which are gD-1 specific, react with an epitope within residues 340 to 356 of the mature protein (residues 365 to 381 of the predicted sequence). Four additional groups of monoclonal antibodies appear to react with discontinuous epitopes of gD-1, since the reactivity of these antibodies was lost when the glycoprotein was denatured by reduction and alkylation. Truncated forms of gD were used to localize these four epitopes to the first 260 amino acids of the mature protein. Competition experiments were used to assess the relative positions of binding of various pairs of monoclonal antibodies. In several cases, when one antibody was bound, there was no interference with the binding of an antibody from another group, indicating that the epitopes were distinct. However, in other cases, there was competition, indicating that these epitopes might share some common amino acids.  相似文献   

20.
Determination of the nature of the antigen-antibody complex has always been the ultimate goal of three-dimensional epitope mapping studies. Various strategies for epitope mapping have been employed which include comparative binding studies with peptide fragments of antigens, binding studies with evolutionarily related proteins, chemical modifications of epitopes, and protection of epitopes from chemical modification or proteolysis by antibody shielding. In this study we report the use of protein engineering to modify residues in horse cytochrome c that are in or near the epitopes of four monoclonal antibodies specific for this protein. The results demonstrate not only that site-specific changes in the antigen binding site dramatically affect antibody binding, but, more importantly, that some of the site-specific changes cause local and long-range perturbations in structure that are detected by monoclonal antibody binding at other surfaces of the antigen. These findings emphasize the role of native conformation in the stabilization of the interaction between protein antigens and high affinity monoclonal antibodies. Furthermore, the results demonstrate that monoclonal antibodies are more sensitive probes of changes in conformation brought about by protein engineering than low resolution spectroscopic methods such as circular dichroism, where similar spectra are observed for all the analogues. These findings suggest a role for monoclonal antibodies in detecting conformational changes invoked by nonconservative amino acid substitutions or substitutions of evolutionarily conserved residues in protein-engineered or recombinant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号