首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The replication initiation protein of the Escherichia coli plasmid R6K is a dual regulator in the control of plasmid copy number, functioning both as a specific initiator and inhibitor of replication. While the biochemical basis of these activities is not known, initiator activity requires binding of the protein to the seven 22 by direct repeats within the -origin region. By deleting C-terminal segments of the coding region, we have found that the N-terminal polypeptides of that are produced, corresponding to the first 117 and 164 amino acids, respectively, retain the negative activity of the bifunctional protein, i.e. these truncated proteins specifically inhibit R6K replication in vivo. These negatively acting polypeptides, however, are incapable of initiating replication in vivo and fail to bind to the -origin of the R6K DNA in vitro. A correspondence between the observed negative activity of the N-terminal peptide and the negative regulatory activity of the intact protein is supported by the finding that point mutations introduced into the 164 amino acid N-terminal peptide that result in a decrease in its inhibitory activity also produce a plasmid high-copy phenotype when these mutations are incorporated into the full-length protein. These findings demonstrate that the negative domain of resides in the N-terminal segment of the protein. Furthermore, the data obtained suggest that inhibition of R6K replication by does not require direct binding to DNA.  相似文献   

2.
Adaptive or selection-induced mutations are defined as mutations that occur in non-dividing cells as a response to prolonged non-lethal selective pressure such as starvation for an essential amino acid. In the absence of DNA replication, the processing of endogenous DNA lesions by repair enzymes probably acts as a source of mutations. We are studying selection-induced reversions of frameshift alleles in the eukaryote Saccharomyces cerevisiae. Here we show that respiration-deficient strains, totally devoid of mitochondrial DNA, yield selection-induced mutants at slightly elevated frequencies compared to isonucleic respiration-competent strains. Therefore factors of mitochondrial origin such as reactive oxygen species or hypothetical recombinogenic DNA fragments are unlikely to be mediators of selection-induced nuclear frameshift mutation in yeast. Furthermore we compared sequence spectra of reversions of the +1 hom3-10 frameshift allele and found a strong preference for −1 deletions in mononucleotide repeats in selection-induced and replication-dependent revertants, indicating slippage errors during DNA repair synthesis as well as during DNA replication. Remarkably, a higher degree of variation in the site of the reverting frameshift and accompanying base substitutions was found among selection-induced revertants. Received: 25 May 1998 / Accepted: 20 August 1998  相似文献   

3.
Growth and the DNA-division sequence in the yeast Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Cells of the yeast S. cerevisiae can be cultured under conditions in which the DNA-division sequence, and not cellular growth, is the rate-limiting feature for cell proliferation. Relief of these limiting conditions, which has been shown to allow accelerated cell division, did not result in increased rates of cell mass accumulation during the time of rapid cell division. Moreover, under conditions of constant DNA-division sequence constraint, populations of smaller cells produced by slowing growth with cycloheximide gave rise to large cells when cycloheximide was removed. These observations suggest that in proliferating cells of S. cerevisiae the DNA-division sequences does not affect cellular growth.  相似文献   

4.
Summary The nucleotide sequences of five of the six centromeres of the yeast Kluyveromyces lactis were determined. Mutual comparison of these sequences led to the following consensus: a short highly conserved box (5-ATCACGTGA-3) flanked by an AT-rich (±90%) stretch of ± 160 by followed by another conserved box (5-TNNTTTATGTTTCCGAAAATTAATAT-3).These three elements were named K1CDEI, K1CDEII, and K1CDEIII respectively, by analogy with the situation in Saccharomyces cerevisiae. In addition, a second 100 by AT-rich (±90%) element, named K1CDE0, was found ± 150 by upstream of K1CDEI. The sequences of both K1CDEI and K1CDEIII are highly conserved between K. lactis and S. cerevisiae; however, centromeres of K. lactis do not function in S. cerevisiae and vice versa. The most obvious differences between the centromeres of the two yeast species are the length of the AT-rich CDEII, which is 161–164 by in K. lactis versus 78–86 by in S. cerevisiae and the presence in K. lactis of K1CDEO, which is not found in S. cerevisiae.  相似文献   

5.
The currently available yeast mitochondrial DNA (mtDNA) sequence is incomplete, contains many errors and is derived from several polymorphic strains. Here, we report that the mtDNA sequence of the strain used for nuclear genome sequencing assembles into a circular map of 85 779 bp which includes 10 kb of new sequence. We give a list of seven small hypothetical open reading frames (ORFs). Hot spots of point mutations are found in exons near the insertion sites of optional mobile group I intron-related sequences. Our data suggest that shuffling of mobile elements plays an important role in the remodelling of the yeast mitochondrial genome.  相似文献   

6.
Summary Nonreciprocal recombination (gene conversion) between homologous sequences at nonhomologous locations in the genome occurs readily in the yeast Saccharomyces cerevisiae. In order to test whether the rate of gene conversion is dependent on the number of homologous copies available in the cell to act as donors of information, the level of conversion of a defined allele was measured in strains carrying plasmids containing homologous sequences. The level of recombination was elevated in a strain carrying multiple copies of the plasmid, compared with the same strain carrying a single copy of the homologous sequences either on a plasmid or integrated in the genome. Thus, the level of conversion is proportional to the number of copies of donor sequences present in the cell. We discuss these results within the framework of currently favoured models of recombination.  相似文献   

7.
Summary cyrl-2 is a temperature-sensitive mutation of the yeast adenylate cyclase structural gene, CYR1. The cyrl-2 mutation has been suggested to be a UGA mutation since a UGA suppressor SUP201 has been isolated as a suppressor of the cyrl-2 mutation. Construction of chimeric genes restricted the region containing the cyrl-2 mutation, and the cyrl-2 UGA mutation was identified at codon 1282, which lies upstream of the region coding for the catalytic domain of adenylate cyclase. Alterations in the region upstream of the cyrl-2 mutation site result in null mutations. The complete open reading frame of the cyrl-2 gene expressed under the control of the GAL1 promoter complemented cyrl-dl in a galactose-dependent manner. These results suggest that at the permissive temperature weak readthrough occurs at the cyrl-2 mutation site to produce low levels of active adenylate cyclase. An endogenous suppressor in yeast cells is assumed to be responsible for this readthrough.  相似文献   

8.
Summary The smp2 mutant of Saccharomyces cerevisiae shows increased stability of the heterologous plasmid pSR1 and YRp plasmids. A DNA fragment bearing the SMP2 gene was cloned by its ability to complement the slow growth of the smp2 smp3 double mutant (smp3 is another mutation conferring increased stability of plasmid pSR1). The nucleotide sequence of SMP2 indicated that it encodes a highly charged 95 kDa protein. Disruption of the genomic SMP2 gene resulted in a respiration-deficient phenotype, although the cells retained mitochondrial DNA, and showed increased stability of pSR1 like the original smp2 mutant. The fact that the smp2 mutant is not always respiration deficient and shows increased pSR1 stability even in a rho 0 strain lacking mitochondrial DNA suggested that the function of the Smp2 protein in plasmid maintenance is independent of respiration. The SMP2 locus was mapped at a site 71 cM from lys7 and 21 cM from ilv2/SMR1 on the right arm of chromosome XIII.  相似文献   

9.
10.
Summary A mutant plasmid, pX, derived from the 1453 base pair small plasmid, YARp1 (or TRP1 RI circle), consists of 849 base pairs of DNA bearing the TRP1 gene and the ARS1 sequence of Saccharomyces cerevisiae and, unlike YARp1 and other commonly used yeast plasmids, highly multimerizes in a S. cerevisiae host. The multimerization of pX was dependent on RAD52, which is known to be necessary for homologous recombination in S. cerevisiae. Based upon this observation, a regulated system of multimerization of pX with GAL1 promoter-driven RAD52 has been developed. We conclude that the regulated multimerization of pX could provide a useful model system to study genetic recombination in the eukaryotic cell, in particular to investigate recombination intermediates and the effects of various trans-acting mutations on the multimerization and recombination of plasmids.  相似文献   

11.
The pem locus, which is responsible for the stable maintenance of the low copy number plasmid R100, contains the pemK gene, whose product has been shown to be a growth inhibitor. Here, we attempted to isolate mutants which became tolerant to transient induction of the PemK protein. We obtained 20 mutants (here called pkt for PemK tolerance), of which 9 were temperature sensitive for growth. We analyzed the nine mutants genetically and found that they could be classified into three complementation groups, pktA, pktB and pktC, which corresponded to three genes, ileS, gltX and asnS, encoding isoleucyl-, glutamyl- and asparaginyl-tRNA synthetases, respectively. Since these aminoacyl-tRNA synthetase mutants did not produce the PemK protein upon induction at the restrictive temperature, these mutants could be isolated because they behaved as if they were tolerant to the PemK protein. The procedure is therefore useful for isolating temperature-sensitive mutants of aminoacyl-tRNA synthetases.  相似文献   

12.
Sexual (MAT a/) and sexual (MAT a/a) strains of the yeast Saccharomyces cerevisiae, which are completely isogenic except at the MAT locus, were compared in their response to ultraviolet radiation. The effects of UV on survival, mitotic intragenic recombination, photoreactivation, and transformation efficiency with UV-irradiated plasmid DNA were examined. The sexual strain had enhanced survival and higher rates of mitotic intragenic recombination compared with the asexual strain. Exposure to visible light subsequent to irradiation increased the survival of both sexual and asexual strains, and decreased their rates of mitotic intragenic recombination. Similar results were obtained by Haladus and Zuk (1980) in their examination of sexual strains homozygous for rad6-1, and wild-type sexuals.

Our sexual strain was also consistently more proficient at transforming plasmid DNA, whether that DNA had been irradiated or not. When pre-irradiated with 25 J/m2 of UV, MAT a/ cells transformed more efficiently than MAT a/a cells. When subsequently exposed to light, the ability of these pre-irradiated cells to transform decreased for both strains with increasing irradiation of the plasmid. A smaller decrease in transformation efficiency occurred when cells of both strains were kept in the dark.

When pre-irradiated with 100 J/m2, the MAT a/ cells showed a 2-fold increase in their transformation efficiency of both irradiated and unirradiated plasmids by up to 2-fold, a phenomenon not seen in the MAT a/a cells even when pre-irradiated with much higher doses of UV. This increase in transformation efficiency was not, however, seen in the MAT a/ cells when they were exposed to visible light after UV irradiation. These results suggest that cells with the MAT a genotype have a UV-inducible system that increases the efficiency of transformation in the absence of visible light. This increase in transformation is not an induced increase in the repair of plasmid DNA, but rather an increase in the ability of pre-irradiated MAT a/ cells to take up exogenous DNA. MAT a/a cells do not appear to have a similarity inducible system. To the best of our knowledge, this phenomenon has not been previously reported.  相似文献   


13.
MMS induced mitotic recombination but not mitotic chromosome loss when tested in pure form in strain D61.M of Saccharomyces cerevisiae, confirming previous results of Albertini (1991), whereas in Aspergillus nidulans it also induced chromosomal malsegregation in addition to mitotic recombination (Käfer, 1988). However, induction of mitotic chromosome loss was observed in combination with strong inducers of chromosome loss such as the aprotic polar solvents ethyl acetate and to a lesser extent methyl ethyl ketone but not with γ-valerolactone and propionitrile. In addition to this, 4 solvents, dimethyl formamide, dimethyl sulfoxide, dioxane and pyridine, enhanced the MMS-induced mitotic recombination in strain D61.M. An enhancement of MMS-induced mitotic recombination and reverse mutation could be demonstrated for ethyl acetate and γ-valerolactone in yeast strain D7.  相似文献   

14.
The Saccharomyces cerevisiae cell adhesion protein a-agglutinin is composed of an anchorage subunit (Aga1p) and an adhesion subunit (Aga2p). Although functional a-agglutinin is expressed only by a cells, previous results indicated that AGA1 RNA is expressed in both a and cells after pheromone induction. Expression of the Aga2p adhesion subunit in a cells allowed a-agglutinability, indicating that a cells express the a-agglutinin anchorage subunit, although no role for Aga1p in cells has been identified. Most of the a-specific agglutination-defective mutants isolated previously were defective in AGA1; a single mutant (La199) was a candidate for an aga2 mutant. Expression of AGA2 under PGK control allowed secretion of active Aga2p from control strains but did not complement the La199 agglutination defect or allow secretion of Aga2p from La 199, suggesting that the La199 mutation might identify a new gene required for a-agglutinin function. However, the La199 agglutination defect showed tight linkage to aga2::URA3 and did not complement aga2::URA3 in a/a diploids. The aga2 gene cloned from La199 was nonfunctional and contained an ochre mutation. The inability of pPGK-AGA2 to express functional Aga2p in La199 was shown to result from an additional mutation(s) that reduces expression of plasmid-borne genes. AGA2 was mapped to the left arm of chromosome VII approximately 28 cM from the centromere.  相似文献   

15.
Summary We have isolated restriction fragments from a shotgun collection of Drosophila DNA which function as autonomously replicating sequences (ARS) in Saccharomyces cerevisiae and hybridize with telomeric regions of the 2L, 2R, 4, and X chromosomes. In an independently obtained set of D. melanogaster clones five fragments hybridize in situ with telomeres and a number of internal sites. Two of them also contain ARSs. A Drosophila mobile P-element also possesses ARS activity in yeast.  相似文献   

16.
17.
18.
19.
20.
Summary We have isolated Saccharomyces cerevisiae mutants, smp, showing stable maintenance of plasmid pSRI, a Zygosaccharomyces rouxii plasmid. The smp mutants were recessive and were classified into at least three different complementation groups. The three mutants also showed increased stability of YRp plasmids and the mutations are additive for plasmid stability. One mutation, smp1, confers a respiration-deficient (rho 0) phenotype and several Rho mutants independently isolated by ethidium bromide treatment of the same yeast strain also showed increased stabilities of pSR1 and YRp plasmids. The wild-type S. cerevisiae cells showed a strongly biased distribution of pSR1 molecules as well as YRp plasmids to the mother cells at mitosis, while the smpf mutant did not show this bias. Another mutation, smp3, at a locus linked to ade2 on chromosome XV, confers temperature-sensitive growth. The SMP3 gene encodes a 59.9 kDa hydrophobic protein and disruption of the gene is lethal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号