首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two groups of organisms to the metabolism of CO, CH4, and NH4+ in various environments are not known. In the ammonia oxidizers, ammonia monooxygenase, the enzyme responsible for the conversion of NH4+ to NH2OH, also catalyzes the oxidation of CH4 to CH3OH. Ammonia monooxygenase also mediates the transformation of CH3OH to CO2 and cell carbon, but the pathway by which this is done is not known. At least one species of ammonia oxidizer, Nitrosococcus oceanus, exhibits a Km for CH4 oxidation similar to that of methanotrophs. However, the highest rate of CH4 oxidation recorded in an ammonia oxidizer is still five times lower than rates in methanotrophs, and ammonia oxidizers are apparently unable to grow on CH4. Methanotrophs oxidize NH4+ to NH2OH via methane monooxygenase and NH4+ to NH2OH via methane monooxygenase and NH2OH to NO2- via an NH2OH oxidase which may resemble the enzyme found in ammonia oxidizers. Maximum rates of NH4+ oxidation are considerably lower than in ammonia oxidizers, and the affinity for NH4+ is generally lower than in ammonia oxidizers. NH4+ does not apparently support growth in methanotrophs. Both ammonia monooxygenase and methane monooxygenase oxidize CO to CO2, but CO cannot support growth in either ammonia oxidizers or methanotrophs. These organisms have affinities for CO which are comparable to those for their growth substrates and often higher than those in carboxydobacteria. The methane monooxygenases of methanotrophs exist in two forms: a soluble form and a particulate form. The soluble form is well characterized and appears unrelated to the particulate. Ammonia monooxygenase and the particulate methane monooxygenase share a number of similarities. Both enzymes contain copper and are membrane bound. They oxidize a variety of inorganic and organic compounds, and their inhibitor profiles are similar. Inhibitors thought to be specific to ammonia oxidizers have been used in environmental studies of nitrification. However, almost all of the numerous compounds found to inhibit ammonia oxidizers also inhibit methanotrophs, and most of the inhibitors act upon the monooxygenases. Many probably exert their effect by chelating copper, which is essential to the proper functioning of some monooxygenases. The lack of inhibitors specific for one or the other of the two groups of bacteria hampers the determination of their relative roles in nature.  相似文献   

2.
Soluble extracts of Methylococcus capsulatus (Bath) that readily oxidise methane to methanol will also oxidise ammonia to nitrite via hydroxylamine. The ammonia oxidising activity requires O2, NADH and is readily inhibited by methane and specific inhibitors of methane mono-oxygenase activity. Hydroxylamine is oxidised to nitrite via an enzyme system that uses phenazine methosulphate (PMS) as an electron acceptor. The estimated K mvalue for the ammonia hydroxylase activity was 87 mM but the kinetics of the oxidation were complex and may involve negative cooperativity.Abbreviations PMS Phenazine methosulphate - NADH nicotinamide adenine dinucleotide, reduced form - K m Michaelis constant - NO 2 - nitrite - NH2OH hydroxylamine  相似文献   

3.
1. A study was made of the incorporation of carbon from [(14)C]methanol by cultures of Methylococcus capsulatus and Methanomonas methanooxidans growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled substrate for periods of up to 3min, was analysed by chromatography and radioautography. 3. Over 80% of the radioactivity fixed by Methylococcus capsulatus at 30 degrees C at the earliest times of sampling appeared in phosphorylated compounds, of which glucose phosphate constituted 60%. 4. Most of the radioactivity fixed by Methanomonas methanooxidans at 30 degrees C at the earliest times of sampling appeared in serine, malate, aspartate and an unknown compound(s) tentatively suggested to be folate derivative(s). At 16 degrees C, [(14)C]methanol was fixed predominantly into serine and the unknown compound(s). 5. Extracts of Methylococcus capsulatus contain an enzyme system that catalyses the condensation of formaldehyde and ribose 5-phosphate to give a mixture consisting mainly of fructose phosphate and allulose phosphate. No similar activity was detected in extracts of Methanomonas methanooxidans. A convenient method was developed for assay of this enzyme system. 6. The enzyme system catalysing the condensation of formaldehyde with ribose 5-phosphate is particle-bound in both Methylococcus capsulatus and Pseudomonas methanica and is unstable in the absence of Mg(2+). 7. Extracts of Methanomonas methanooxidans contain high activities of d-glycerate-NAD oxidoreductase, whereas extracts of Methylococcus capsulatus and Pseudomonas methanica contain negligible activities of this enzyme. 8. These results indicate that during growth of Methylococcus capsulatus on methane, as with Pseudomonas methanica, cell constituents are made by the ribose phosphate cycle of formaldehyde fixation. This contrasts with Methanomonas methanooxidans, whose assimilation pathway resembles in some features that of Pseudomonas AM1 growing on methanol.  相似文献   

4.
Microorganisms assimilating methane at temperatures above 40 degrees C were isolated from various natural sources: ooze, mud, waste water of coal pits. The bacteria are obligate methylotrophs and are represented by two groups: (a) thermotolerant, growing at 37 to 45 degrees C; and (b) thermophilic, growing at 50 to 62 degrees C. The selective factor used to isolate various physiological forms of methylotrophs is corresponding temperatures of growth which allow to isolate from the same substrate meso-, thermotolerant, and thermophilic forms. Morphological and physiological properties of the strains are described. The thermotolerant cultures of methylotrophs are similar to Methylobacter vinelandii, though differ from it by some characteristics. The thermophilic microorganisms should be classed as a separate species Methylococcus thermophilus.  相似文献   

5.
Whether selected heterotrophic nitrifiers, as do the autotrophs, conserve energy during the oxidation of their nitrogenous substrates was studied. The examination of proton translocation of four different bacterial nitrifiers capable of pyruvic oxime [(PO), CH3-C(NOH)-COOH] nitrification and by an NH4+ oxidizing Arthrobacter sp. was initiated. Three of the PO nitrifying bacteria, all pseudomonads, oxidize hydroxylamine (NH2OH) at a greater rate than PO and yielded only stoichiometric protons when NH2OH was the reductant. The fourth bacterium, Alcaligenes faecalis ATCC 8750, an adept PO oxidizer, does not appreciably oxidize NH2OH. The bacterium displayed----H+NH2OH ratios far less than if NH2OH was stoichiometrically converted to nitrite. When given NH4+, the Arthrobacter sp. yielded proton translocation patterns which were inconsistent with the metabolic data collected concerning NH4+ oxidation. Thus no data was collected which supported energy conservation via proton translocation by these heterotrophic nitrifiers.  相似文献   

6.
1. Methane mono-oxygenase from Methylosinus trichosporium has the same broad substrate specificity as the analogous enzyme from Methylococcus capsulatus (Bath); the enzyme from Methylomonas methanica is more specific. 2. Contrary to previous reports, NAD(P)H and not ascorbate is the required electron donor for the enzyme from Methylosinus trichosporium. 3. It is concluded that these three bacteria contain similar methane mono-oxygenases.  相似文献   

7.
The inhibition of methane oxidation by cell suspensions of Methylococcus capsulatus (Bath) exposed to hydrochlorofluorocarbon 21 (HCFC-21; difluorochloromethane [CHF(inf2)Cl]), HCFC-22 (fluorodichloromethane [CHFCl(inf2)]), and various fluorinated methanes was investigated. HCFC-21 inhibited methane oxidation to a greater extent than HCFC-22, for both the particulate and soluble methane monooxygenases. Among the fluorinated methanes, both methyl fluoride (CH(inf3)F) and difluoromethane (CH(inf2)F(inf2)) were inhibitory while fluoroform (CHF(inf3)) and carbon tetrafluoride (CF(inf4)) were not. The inhibition of methane oxidation by HCFC-21 and HCFC-22 was irreversible, while that by methyl fluoride was reversible. The HCFCs also proved inhibitory to methanol dehydrogenase, which suggests that they disrupt other aspects of C(inf1) catabolism in addition to methane monooxygenase activity.  相似文献   

8.
Bacterial oxidation of polyethylene glycol.   总被引:13,自引:8,他引:5       下载免费PDF全文
The metabolism of polyethylene glycol (PEG) was investigated with a synergistic, mixed culture of Flavobacterium and Pseudomonas species, which are individually unable to utilize PEGs. The PEG dehydrogenase linked with 2,6-dichlorophenolindophenol was found in the particulate fraction of sonic extracts and catalyzed the formation of a 2,4-dinitrophenylhydrazine-positive compound, possibly an an aldehyde. The enzyme has a wide substrate specificity towards PEGs: from diethylene glycol to PEG 20,000 Km values for tetraethylene glycol (TEG), PEG 400, and PEG 6,000 were 11, 1.7, and 15 mM, respectively. The metabolic products formed from TEG by intact cells were isolated and identified by combined gas chromatography-mass spectrometry as triethylene glycol and TEG-monocarboxylic acid plus small amounts of TEG-dicarboxylic acid, diethylene glycol, and ethylene glycol. From these enzymatic and analytical data, the following metabolic pathway was proposed for PEG: HO(CH2CH2O)nCH2CH2OH leads to HO(CH2CH2O)nCH2CHO leads to HO(CH2CH2O)nCH2COOH leads to HO(CH2CH2O)n-1CH2CH2OH.  相似文献   

9.
Many methane-oxidizing bacteria (MOB) have been shown to aerobically oxidize ammonia and hydroxylamine (NH(2)OH) to produce nitrite and nitrous oxide (N(2)O). Genome sequences of alphaproteobacterial, gammaproteobacterial, and verrucomicrobial methanotrophs revealed the presence of haoAB, cytL, cytS, nirS or nirK, and norCB genes that may be responsible for N(2)O production, and additional haoAB genes were sequenced from two strains of Methylomicrobium album. The haoAB genes of M. album ATCC 33003 were inducible by ammonia and NH(2)OH, similar to haoAB induction by ammonia in Methylococcus capsulatus Bath. Increased expression of genes encoding nitric oxide reductase (cNOR; norCB) was measured upon exposure of M. capsulatus Bath to NaNO(2) and NO-releasing sodium nitroprusside. Only incubations of M. capsulatus Bath with methane, ammonia, and nitrite produced N(2)O. The data suggest a possible pathway of nitrite reduction to NO by reversely operating NH(2)OH oxidoreductase and NO reduction to N(2)O by cNOR independently or in conjunction with ammonia-induced enzymes (i.e. HAO or cytochrome c'-β). Results of this study show that MOB likely have diverse mechanisms for nitrogen oxide metabolism and detoxification of NH(2)OH that involve conventional and unconventional enzymes.  相似文献   

10.
Methane oxidation by Nitrosomonas europaea.   总被引:19,自引:0,他引:19       下载免费PDF全文
Methane inhibited NH4+ utilization by Nitrosomonas europaea with a Ki of 2mM. O2 consumption was not inhibited. In the absence of NH4+, or with hydrazine as reductant, methane caused nearly a doubling in the rate of O2 uptake. The stimulation was abolished by allylthiourea, a sensitive inhibitor of the oxidation of NH4+. Analysis revealed that methanol was being formed in these experiments, with yields approaching 1 mol of methanol per mol of O2 consumed under certain conditions. When cells were incubated with NH4+ under an atmosphere of 50% methane, 50 microM-methanol was generated in 1 h. It is concluded that methane is an alternative substrate for the NH3-oxidizing enzyme (ammonia mono-oxygenase),m albeit with a much lower affinity than for methane mono-oxygenase of methanotrophs.  相似文献   

11.
Towards a unified mechanism of biological methane oxidation   总被引:1,自引:0,他引:1  
Abstract The biological oxidation of methane to methanol is catalysed by soluble and particulate forms of the enzyme methane monooxygenase. Little information is available regarding the structure and mechanism of the particulate enzyme whereas much is known about the soluble form of the enzyme. This review concentrates on current knowledge of the structure of the components of the soluble methane monooxygenase and draws together these results with those on the kinetics and substrate specificity of the enzyme in a possible chemical mechanism for enzymatic methane oxidation.  相似文献   

12.
Following the example set by studies of the mechanistic aspects of the substrate specificity of various cytochrome P-450 enzymes, we have undertaken a parallel investigation of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). Soluble methane monooxygenase is a multicomponent enzyme with a broad substrate specificity. Using substrates previously tested with cytochrome P-450 enzymes and using purified enzyme preparations, this work indicates that soluble methane monooxygenase has a similar oxidative reaction mechanism to cytochrome P-450 enzymes. The evidence suggests that soluble methane monooxygenase oxidizes substrates via a nonconcerted reaction mechanism (hydrogen abstraction preceding hydroxylation) with radical or carbocation intermediates. Aromatic hydroxylation proceeds by epoxidation followed by an NIH shift.  相似文献   

13.
R Patel  C T Hou    A Felix 《Journal of bacteriology》1976,126(2):1017-1019
Metal-chelating or -binding agents inhibited the oxidation of dimethyl ether and methane, but not methanol, by cell suspensions of Methylococcus capsulatus and Methylosinus trichosporium. Evidence suggests that the involvement of metal-containing enzymatic systems in the initial step of oxidation of dimethyl ether and methane.  相似文献   

14.
Foster, J. W. (The University of Texas, Austin), and Richard H. Davis. A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J. Bacteriol. 91:1924-1931. 1966.-A new coccus-shaped bacterium capable of aerobic growth at the expense of methane or methanol in a mineral salts medium is described. The organism did not grow at the expense of any of the conventional substrates or homologous hydrocarbons tested. It is gram-negative, nonmotile, and thermotolerant. It grows well at 50 C, optimally at 37 C, but does not grow at 55 C. The cells are encapsulated and have a characteristic diplococcoid arrangement. Washed, "resting-cell" suspensions oxidized certain primary alcohols and short-chain alkanes, an example of "nongrowth oxidation." Of the methane-C utilized, 86% was "fixed" in organic form; the remainder was oxidized to CO(2). The guanine-cytosine content of the extracted deoxyribonucleic acid was 62.5%. Obligate methane-utilizing bacteria are considered as "one-carbon" organisms rather than hydrocarbon utilizers. The assimilation pathway in the obligate methane-methanol bacteria is different from that in the facultative methanol utilizers. Nomenclatural problems arising from the use of the prefix "Methano-" to denote both bacteria that oxidize methane and bacteria that produce methane are discussed. The obligate, one-carbon, methane-methanol bacteria are considered as "methyl" utilizers, and the prefix "Methylo-" is suggested as a solution to the problem of generic cognomens. "Methylococcus capsulatus" gen. n., sp. n. is the name proposed for the new methane coccus.  相似文献   

15.
The oxidation of methane to methanol in methanotrophs is catalyzed by the enzyme methane monooxygenase (MMO). Two distinct forms of this enzyme exist, a soluble cytoplasmic MMO (sMMO) and a membrane-bound particulate form (pMMO). The active protein complex termed pMMO-C was purified recently from Methylococcus capsulatus (Bath). The complex consists of pMMO hydroxylase and an additional component pMMO-R, which was proposed to be the reductase for the pMMO complex. Further study of this complex has led here to the proposal that the pMMO-R is in fact methanol dehydrogenase, the subsequent enzyme in the methane oxidation pathway by methanotrophs. We describe here the biochemical and biophysical characterization of a stable purified complex of pMMO hydroxylase (pMMO-H) with methanol dehydrogenase (MDH) and report the first three-dimensional (3D) structure, determined by cryoelectron microscopy and single particle analysis to approximately 16 A resolution. The 3D structure reported here provides the first insights into the supramolecular organization of pMMO with MDH. These studies of pMMO-MDH complexes have provided further understanding of the structural basis for the particular functions of the enzymes in this system which might also be of relevance to the complete process of methane oxidation by methanotrophs under high copper concentration in the environment.  相似文献   

16.
Movile Cave is an unusual groundwater ecosystem that is supported by in situ chemoautotrophic production. The cave atmosphere contains 1-2% methane (CH4), although much higher concentrations are found in gas bubbles that keep microbial mats afloat on the water surface. As previous analyses of stable carbon isotope ratios have suggested that methane oxidation occurs in this environment, we hypothesized that aerobic methane-oxidizing bacteria (methanotrophs) are active in Movile Cave. To identify the active methanotrophs in the water and mat material from Movile Cave, a microcosm was incubated with a 10%13CH4 headspace in a DNA-based stable isotope probing (DNA-SIP) experiment. Using improved centrifugation conditions, a 13C-labelled DNA fraction was collected and used as a template for polymerase chain reaction amplification. Analysis of genes encoding the small-subunit rRNA and key enzymes in the methane oxidation pathway of methanotrophs identified that strains of Methylomonas, Methylococcus and Methylocystis/Methylosinus had assimilated the 13CH4, and that these methanotrophs contain genes encoding both known types of methane monooxygenase (MMO). Sequences of non-methanotrophic bacteria and an alga provided evidence for turnover of CH4 due to possible cross-feeding on 13C-labelled metabolites or biomass. Our results suggest that aerobic methanotrophs actively convert CH4 into complex organic compounds in Movile Cave and thus help to sustain a diverse community of microorganisms in this closed ecosystem.  相似文献   

17.
The oxidation of methane to methanol in methanotrophic bacteria is catalysed by the enzyme methane monooxygenase (MM0). This multicomponent enzyme catalyses a range of oxidations including that of aliphatic and aromatic compounds and therefore has potential for commercial exploitation. This study details the molecular characterization of the soluble MMO (sMMO) genes from the Type II methanotroph Methylosinus trichosporium OB3b. The structural genes encoding the alpha, beta and gamma subunits of sMMO protein A and the structural gene encoding component B have been isolated and sequenced. These genes have been expressed and their products identified using an in vitro system. A comparative analysis of sMMO predicted sequences of M. trichosporium OB3b and the taxonomically related M. capsulatus (Bath) is also presented.  相似文献   

18.
Y Jin  J D Lipscomb 《Biochemistry》1999,38(19):6178-6186
The soluble form of methane monooxygenase (MMO) isolated from methanotrophic bacteria catalyzes the O2-dependent conversion of methane to methanol, as well as the adventitious oxidation of many other hydrocarbons. In past studies, it was reported that the oxidation reaction of methylcubane, a radical clock substrate, catalyzed by MMO from Methylococcus capsulatus (Bath) gave only cubylmethanol as the product rather than methylcubanol(s) or rearranged products characteristic of a radical formed on the methyl group [Choi, S.-Y., Eaton, P. E., Hollenberg, P. F., Liu, K. E., Lippard, S. J., Newcomb, M., Putt, D. A., Upadhyaya, S. P., and Xiong, Y. (1996) J. Am. Chem. Soc. 118, 6547-6555]. Such a substrate radical intermediate would be expected if the mechanism of MMO involves hydrogen atom abstraction as indicated by many previous mechanistic studies. Here it is shown that the reaction of methylcubane with the reconstituted MMO system from Methylosinus trichosporium OB3b yields both cubylmethanol and methylcubanols, with methyl hydroxylation favored over cubyl hydroxylation. This unexpected regioselectivity indicates steric effects on the reaction in agreement with past product distribution studies. In addition, the apparent majority product of the reaction is tentatively assigned as one of the possible rearranged products for this radical probe, on the basis of gas chromatography and mass spectrometry data. This result suggests the formation of a radical intermediate in the reaction, thus supporting a radical-based mechanism for this form of MMO.  相似文献   

19.
Distribution and purification of aspartate racemase in lactic acid bacteria   总被引:2,自引:0,他引:2  
The distribution of aspartate racemase (EC 5.1.1.13) in various kinds of bacteria demonstrated that the enzyme occurs in lactic acid bacteria, such as Streptococcus species and Lactobacillus species. The enzyme from Streptococcus thermophilus IAM10064 was more thermostable than that from Streptococcus lactis IAM1198 which contained the enzyme most abundantly among the lactic acid bacteria we examined here. We purified the enzyme about 3400-fold to homogeneity from cell-free extract of S. thermophilus, which is composed of two identical subunits with a molecular weight of 28,000 as a homodimer. The enzyme utilizes specifically aspartate as a substrate, but not alanine and glutamate. Maximal reaction velocity was observed at 37 degrees C and around pH 8.0. The sequence of the NH2-terminal amino acids of the enzyme was determined to be Met-Glu-Asn-Phe-Phe-Ser-Ile-Leu-Gly-XXX-Met-Gly-Thr-Met-Ala-Thr-Glu-Ser- Phe-.  相似文献   

20.
Cell-free particulate fractions of extracts from the obligate methylotroph Methylococcus capsulatus catalyze the reduced nicotinamide adenine dinucleotide (NADH) and O2-dependent oxidation of methane (methane hydroxylase). The only oxidation product detected was formate. These preparations also catalyze the oxidation of methanol and formaldehyde to formate in the presence or absence of phenazine methosulphate with oxygen as the terminal electron acceptor. Methane hydroxylase activity cannot be reproducibly obtained from disintegrated cell suspensions even though the whole cells actively respired when methane was presented as a substrate. Varying the disintegration method or extraction medium had no significant effect on the activities obtained. When active particles were obtained, hydroxylase activity was stable at 0 C for days. Methane hydroxylase assays were made by measuring the methane-dependent oxidation of NADH by O2. In separate experiments, methane consumption and the accumulation of formate were also demonstrated. Formate is not oxidized by these particulate fractions. The effects of particle concentration, temperature, pH, and phosphate concentration on enzymic activity are described. Ethane is utilized in the presence of NADH and O2. The stoichiometric relationships of the reaction(s) with methane as substrate were not established since (i) the presumed initial product, methanol, is also oxidized to formate, and (ii) the contribution that NADH oxidase activity makes to the observed consumption of reactants could not be assessed in the presence of methane. Studies with known inhibitors of electron transport systems indicate that the path of electron flow from NADH to oxygen is different for the NADH oxidase, methane hydroxylase, and methanol oxidase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号