首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pulmonary vascular medial hypertrophy due to proliferation of pulmonary artery smooth muscle cells (PASMC) greatly contributes to the increased pulmonary vascular resistance in pulmonary hypertension patients. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) is an important stimulus for cell growth in PASMC. Resting [Ca2+]cyt, intracellularly stored [Ca2+], capacitative Ca2+ entry (CCE), and store-operated Ca2+ currents (I(SOC)) are greater in proliferating human PASMC than in growth-arrested cells. Expression of TRP1, a transient receptor potential gene proposed to encode the channels responsible for CCE and I(SOC), was also upregulated in proliferating PASMC. Our aim was to determine if inhibition of endogenous TRP1 gene expression affects I(SOC) and CCE and regulates cell proliferation in human PASMC. Cells were treated with an antisense oligonucleotide (AS, for 24 h) specifically designed to cleave TRP1 mRNA and then returned to normal growth medium for 40 h before the experiments. Then, mRNA and protein expression of TRP1 was downregulated, and amplitudes of I(SOC) and CCE elicited by passive depletion of Ca2+ from the sarcoplasmic reticulum using cyclopiazonic acid were significantly reduced in the AS-treated PASMC compared with control. Furthermore, the rate of cell growth was decreased by 50% in AS-treated PASMC. These results indicate that TRP1 may encode a store-operated Ca2+ channel that plays a critical role in PASMC proliferation by regulating CCE and intracellular [Ca2+](cyt).  相似文献   

3.
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) results from Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through Ca(2+)-permeable ion channels and is crucial for initiating intestinal epithelial restitution to reseal superficial wounds after mucosal injury. Capacitative Ca(2+) entry (CCE) induced by Ca(2+) store depletion represents a major Ca(2+) influx mechanism, but the exact molecular components constituting this process remain elusive. This study determined whether canonical transient receptor potential (TRPC)1 served as a candidate protein for Ca(2+)-permeable channels mediating CCE in intestinal epithelial cells and played an important role in early epithelial restitution. Normal intestinal epithelial cells (the IEC-6 cell line) expressed TRPC1 and TPRC5 and displayed typical records of whole cell store-operated Ca(2+) currents and CCE generated by Ca(2+) influx after depletion of intracellular stores. Induced TRPC1 expression by stable transfection with the TRPC1 gene increased CCE and enhanced cell migration during restitution. Differentiated IEC-Cdx2L1 cells induced by forced expression of the Cdx2 gene highly expressed endogenous TRPC1 and TRPC5 and exhibited increased CCE and cell migration. Inhibition of TRPC1 expression by small interfering RNA specially targeting TRPC1 not only reduced CCE but also inhibited cell migration after wounding. These findings strongly suggest that TRPC1 functions as store-operated Ca(2+) channels and plays a critical role in intestinal epithelial restitution by regulating CCE and intracellular [Ca(2+)](cyt).  相似文献   

4.
Mammalian homologs of transient receptor potential (TRP) genes in Drosophila encode TRPC proteins, which make up cation channels that play several putative roles, including Ca2+ entry triggered by depletion of Ca2+ stores in endoplasmic reticulum (ER). This capacitative calcium entry (CCE) is thought to replenish Ca2+ stores and contribute to signaling in many tissues, including smooth muscle cells from main pulmonary artery (PASMCs); however, the roles of CCE and TRPC proteins in PASMCs from distal pulmonary arteries, which are thought to be the major site of pulmonary vasoreactivity, remain uncertain. As an initial test of the possibility that TRPC channels contribute to CCE and Ca2+ signaling in distal PASMCs, we measured [Ca2+]i by fura-2 fluorescence in primary cultures of myocytes isolated from rat intrapulmonary arteries (>4th generation). In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 microM) and nifedipine (5 microM) to deplete ER Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i whereas MnCl2 (200 microM) quenched fura-2 fluorescence, indicating CCE. SKF-96365, LaCl3, and NiCl2, blocked CCE at concentrations that did not alter Ca2+ responses to 60 mM KCl (IC50 6.3, 40.4, and 191 microM, respectively). RT-PCR and Western blotting performed on RNA and protein isolated from distal intrapulmonary arteries and PASMCs revealed mRNA and protein expression for TRPC1, -4, and -6, but not TRPC2, -3, -5, or -7. Our results suggest that CCE through TRPC-encoded Ca2+ channels could contribute to Ca2+ signaling in myocytes from distal intrapulmonary arteries.  相似文献   

5.
6.
7.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).  相似文献   

8.
1alpha,25-Dihydroxy-Vitamin-D3 (1alpha,25(OH)2-Vitamin D3) stimulates in skeletal muscle cells Ca2+ release from inner stores and influx through both voltage-dependent and store-operated Ca2+ (SOC, CCE) channels. We investigated the involvement of TRPC proteins and Vitamin D receptor (VDR) in CCE induced by 1alpha,25(OH)2D3 in chick muscle cells. Two fragments were amplified by RT-PCR, exhibiting approximately 80% sequence homology with mammalian TRPC3/6/7. Northern and Western blots employing a TRPC3-probe and anti-TRPC3 antibodies, respectively, confirmed endogenous expression of a TRPC3-like protein of 140 kDa. Spectrofluorimetric measurements in Fura-2 loaded cells showed reduced CCE and Mn2+ entry in response to either thapsigargin or 1alpha,25(OH)2D3 upon transfection with anti-TRPC3/6/7 antisense oligodeoxynucleotides (ODNs). Transfection with anti-VDR antisense ODNs diminished 1alpha,25(OH)2D3-dependent Ca2+ and Mn2+ influx. Co-immunoprecipitation of TRPC3-like protein and VDR under non-denaturating conditions was observed. We propose that endogenous TRPC3-like proteins and the VDR participate in the modulation of CCE by 1alpha,25(OH)2D3 in muscle cells, which could be mediated by an interaction between these proteins.  相似文献   

9.
A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through plasmalemmal Ca(2+) channels plays a critical role in mitogen-mediated cell growth. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), a mechanism involved in maintaining Ca(2+) influx and refilling intracellular Ca(2+) stores. Transient receptor potential (TRP) genes have been demonstrated to encode the store-operated Ca(2+) channels that are activated by Ca(2+) store depletion. In this study, we examined whether CCE, activity of store-operated Ca(2+) channels, and human TRP1 (hTRP1) expression are essential in human pulmonary arterial smooth muscle cell (PASMC) proliferation. Chelation of extracellular Ca(2+) and depletion of intracellularly stored Ca(2+) inhibited PASMC growth in media containing serum and growth factors. Resting [Ca(2+)](cyt) as well as the increases in [Ca(2+)](cyt) due to Ca(2+) release and CCE were all significantly greater in proliferating PASMC than in growth-arrested cells. Consistently, whole cell inward currents activated by depletion of intracellular Ca(2+) stores and the mRNA level of hTRP1 were much greater in proliferating PASMC than in growth-arrested cells. These results suggest that elevated [Ca(2+)](cyt) and intracellularly stored [Ca(2+)] play an important role in pulmonary vascular smooth muscle cell growth. CCE, potentially via hTRP1-encoded Ca(2+)-permeable channels, may be an important mechanism required to maintain the elevated [Ca(2+)](cyt) and stored [Ca(2+)] in human PASMC during proliferation.  相似文献   

10.
11.
Calcium signalling is involved in myriad cellular processes such as mating morphogenesis. Mating in yeast induces changes in cell morphology with a concomitant increase in calcium uptake that is dependent on the MID1 and CCH1 genes. Mid1p and Cch1p are believed to function in a capacitive calcium entry (CCE)-like process. Amiodarone alters mammalian calcium channel activity but, despite its clinical importance, its molecular mechanisms are not clearly defined. We have shown previously that amiodarone has fungicidal activity against a broad array of fungi. We show here that amiodarone causes a dramatic increase in cytoplasmic calcium ([Ca2+]cyt) in Saccharomyces cerevisiae. The majority of this increase is dependent on extracellular Ca2+ nonetheless, a significant increase in [Ca2+]cyt is still induced by amiodarone when no uptake of extracellular Ca2+ can occur. The influx of extracellular Ca2+ may be a direct effect of amiodarone on a membrane transporter or may be by a CCE mechanism. Uptake of the extracellular Ca2+ is inhibited by caffeine and reduced in strains deleted for the mid1 gene, but not in cells deleted for cch1. Our data are the first demonstrating control of yeast calcium channels by amiodarone and caffeine.  相似文献   

12.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

13.
14.
We assessed the roles of the protein kinase C (PKC) and the tyrosine kinase (TK) signaling pathways in regulating capacitative calcium entry (CCE) in human pulmonary artery smooth muscle cells (PASMCs) and investigated the effects of intravenous anesthetics (midazolam, propofol, thiopental, ketamine, etomidate, morphine, and fentanyl) on CCE in human PASMCs. Fura-2-loaded human PASMCs were placed in a dish (37 degrees C) on an inverted fluorescence microscope. Intracellular Ca2+ concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PASMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+ stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+ (2.2 mM). The effects of PKC activation and inhibition, TK inhibition, and the intravenous anesthetics on CCE were assessed. Thapsigargin caused a transient increase in [Ca2+]i. Restoring extracellular Ca2+ caused a rapid peak increase in [Ca2+]i, followed by a sustained increase in [Ca2+]i; i.e., CCE was stimulated in human PASMCs. PKC activation attenuated (P < 0.05), whereas PKC inhibition potentiated (P < 0.05), both peak and sustained CCE. TK inhibition attenuated (P < 0.05) both peak and sustained CCE. Midazolam, propofol, and thiopental each attenuated (P < 0.05) both peak and sustained CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. Our results suggest that CCE in human PASMCs is influenced by both the TK and PKC signaling pathways. Midazolam, propofol, and thiopental each attenuated CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE.  相似文献   

15.
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.  相似文献   

16.
Capacitative calcium entry (CCE), the mechanism that replenishes the internal Ca2+ stores with Ca2+ from the extracellular milieu in response to depletion of the store, is mediated by Ca2+ channels in the plasma membrane generally referred to as store-operated channels (SOCs). However, the roles of SOCs in the more physiological context have been fully elucidated. 2-Aminoethyl diphenylborinate (2-APB) strongly inhibits SOCs, as well as inositol-1,4,5 trisphosphate (IP3) receptors. In the present study, we screened a library of 166 2-APB analogues for effects on CCE and IP3-induced Ca2+ release in order to discover specific SOC inhibitors, and found that some blocked both store-operated and receptor-operated Ca2+ influx more strongly and selectively than 2-APB. Indeed, these new compounds ceased the prolonged intracellular Ca2+ oscillations induced by a low concentration of ATP in CHO-K1 cells. These novel SOC inhibitors will be valuable pharmacological and biochemical tools for elucidating the physiological roles.  相似文献   

17.
A transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt) is thought to be a prerequisite for an appropriate physiological response to both chilling and salt stress. The [Ca2+]cyt is raised by Ca2+ influx to the cytosol from the apoplast and/or intracellular stores. It has been speculated that different signals mobilise Ca2+ from different stores, but little is known about the origin(s) of the Ca2+ entering the cytosol in response to specific environmental challenges. We have utilised the developmentally regulated suberisation of endodermal cells, which is thought to prevent Ca2+ influx from the apoplast, to ascertain whether Ca2+ influx is required to increase [Ca2+]cyt in response to chilling or salt stress. Perturbations in [Ca2+]cyt were studied in transgenic Arabidopsis thaliana, expressing aequorin fused to a modified yellow fluorescent protein solely in root endodermal cells, during slow cooling of plants from 20 to 0.5 degrees C over 5 min and in response to an acute salt stress (0.333 m NaCl). Only in endodermal cells in the apical 4 mm of the Arabidopsis root did [Ca2+]cyt increase significantly during cooling, and the magnitude of the [Ca2+]cyt elevation elicited by cooling was inversely related to the extent of suberisation of the endodermal cell layer. No [Ca2+]cyt elevations were elicited by cooling in suberised endodermal cells. This is consistent with the hypothesis that suberin lamellae isolate the endodermal cell protoplast from the apoplast and, thereby, prevent Ca2+ influx. By contrast, acute salt stress increased [Ca2+]cyt in endodermal cells throughout the root. These results suggest that [Ca2+]cyt elevations, upon slow cooling, depend absolutely on Ca2+ influx across the plasma membrane, but [Ca2+]cyt elevations in response to acute salt stress do not. They also suggest that Ca2+ release from intracellular stores contributes significantly to increasing [Ca2+]cyt upon acute salt stress.  相似文献   

18.
We investigated the existence of a capacitative Ca2+ entry (CCE) pathway in ROS 17/2.8 osteoblast-like cells and its responsiveness to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. Depletion of inner Ca2+ stores with thapsigargin or 1,25(OH)2D3 in the absence of extracellular Ca2+ transiently elevated cytosolic Ca2+ ([Ca2+]i); after recovery of basal values, Ca2+ re-addition to the medium markedly increased Ca2+ entry, reflecting pre-activation of a CCE pathway. Recovery of the Ca2+ overshoot that followed the induced CCE was mainly mediated by the plasma membrane Ca2+-ATPase. Addition of 1,25(OH)2D3 to the declining phase of the thapsigargin-induced CCE did not modify further [Ca2+]i, indicating that steroid activation of CCE was dependent on store depletion. Pre-treatment with 1 microM Gd3+ inhibited 30% both thapsigargin- and 1,25(OH)2D3-stimulated CCE, whereas 2.5 microM Gd3+ was required for maximal inhibition ( approximately 85%). The activated CCE was permeable to both Mn2+ and Sr2+. Mn2+ entry sensitivity to Gd3+ was the same as that of the CCE. However, 1-microM Gd3+ completely prevented capacitative Sr2+ influx, whereas subsequent Ca2+ re-addition was reduced only 30%. These results suggest that in ROS 17/2.8 cells CCE induced by thapsigargin or 1,25(OH)2D3 is contributed by at least two cation entry pathways: a Ca2+/Mn2+ permeable route insensitive to very low micromolar (1 microM) Gd3+ accounting for most of the CCE and a minor Ca2+/Sr2+/Mn2+ permeable route highly sensitive to 1 microM Gd3+. The Ca2+-mobilizing agonist ATP also stimulated CCE resembling the Ca2+/Sr2+/Mn2+ permeable entry activated by 1,25(OH)2D3. The data demonstrates for the first time, the presence of a hormone-responsive CCE pathway in an osteoblast cell model, raising the possibility that it could be an alternative Ca2+ influx route through which osteotropic agents influence osteoblast Ca2+ homeostasis. Copyright Wiley-Liss, Inc.  相似文献   

19.
Depletion of agonist-sensitive Ca2+ stores results in activation of capacitative Ca2+ entry (CCE) in endothelial cells. The proportion of Ca2+ stores contributing to the regulation of CCE is unknown. In fura-2/am loaded single endothelial cells freshly isolated from bovine left circumflex coronary arteries, we investigated whether a resting period in a Ca(2+)-free environment results in emptying of bradykinin-sensitive Ca2+ stores (BsS) and activation of CCE. In a Ca(2+)-free environment, depletion of BsS occurred in a time-dependent manner (59% after 10 min in Ca(2+)-free solution). This effect was prevented by inhibition of the Na(+)-Ca2+ exchange but not by a blockade of ryanodine-sensitive Ca2+ release (RsCR). In contrast to BsS, mitochondrial Ca2+ content remained unchanged in the Ca(2+)-free environment. Remarkably, activity of CCE (monitored as Mn2+ influx) did not increase after depletion of BsS in the Ca(2+)-free environment. In contrast to Mn2+ influx, the effect of re-addition of Ca2+ to elevate bulk Ca2+ concentration ([Ca2+]b) decreased with the time the cells rested in Ca(2+)-free buffer. This decrease was prevented by an inhibition of RsCR. In low Na+ conditions the effect of Ca2+ on [Ca2+]b was reduced while it did not change the time the cells rested in Ca(2+)-free solution. After a 2 min period in low Na+ conditions, ryanodine-induced Ca2+ extrusion was markedly diminished. Inhibition of RsCR re-established the effect of Ca2+ on [Ca2+]b in low Na+ conditions. Collapsing subplasmalemmal Ca2+ stores with nocodazole, increased the effect of Ca2+ on [Ca2+]b. In nocodazole-treated cells, the effect of Ca2+ on [Ca2+]b was not reduced in Ca(2+)-free environment. These data indicate that activation of CCE is not associated with the agonist-sensitive Ca2+ pools that deplete rapidly in a Ca(2+)-free environment. Subplasmalemmal ryanodine-sensitive Ca2+ stores (RsS) are emptied in Ca(2+)-free/low Na+ solution and re-sequester Ca2+ which enters the cells prior an increase in [Ca2+]b occurs. Thus, in endothelial cells there are differences in the functions of various subplasmalemmal Ca2+ stores (i.e. BsS and RsS), which include either activation of CCE or regulation of subplasmalemmal Ca2+.  相似文献   

20.
Ca^2+参与茉莉酸诱导蚕豆气孔关闭的信号转导   总被引:1,自引:0,他引:1  
以Fluo-3 AM为Ca^2+荧光探针,结合激光共聚焦扫描显微技术,观察到在处理后数十秒内,气孔关闭之前,茉莉酸(JA)可引起[Ca^2+]cyt的迅速上升;对照和JA的前体物亚麻酸(LA)几乎不能引起[Ca^2+]cyt的明显变化;钙的螯合剂EGTA预处理可完全阻断JA诱导气孔关闭的效应,并且JA不再引起保卫细胞[Ca^2+]cyt增加;质膜Cah通道的抑制剂硝苯吡啶(nifedipine,NIF)可减弱JA诱导气孔关闭的效应,也使JA诱导保卫细胞[Ca^2+]cyt增加的幅度有所下降;胞内Ca^2+释放的抑制剂钌红不能明显改变JA诱导气孔关闲的趋势,但使JA引起的保卫细胞[Ca^2+]cyt增加有所降低。实验结果表明:Ca^2+参与JA诱导气孔关闭的信号转导;推测JA引起的[Ca^2+]cyt升高可能主要来源于胞外,但不能完全排除胞内Ca^2+的释放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号