首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model can serve as a useful reference for describing the mechanisms involved in digestion and for discussing the factors that influence the rate and extent of ruminal digestion. Ruminal digestion can be divided into four components: digestion rate, digestion lag, potential extent of digestion, and passage rate. Each component affects the apparent extent of digestion in a distinct manner and is influenced by separate factors. Digestion rate is directly related to apparent extent of digestion. It is not influenced by chemical entities presently being measured, but may be related to the morphological, crystalline, or physical nature of fiber. It may also be influenced by factors that inhibit or stimulate ruman microbial growth and their fiber-degrading enzymes. Digestion lag is inversely related to apparent extent of digestion; however, factors influencing it are poorly defined. The may include factors affecting microbial populations and their attachment to fiber prior to digestion; or the digestion lag may be related to the chemical or physical alteration of fiber that must occur before digestion can begin. The potential extent of digestion is directly related to apparent extent of digestion and is influenced by plant fiber composition, primarily. Lignin, and possibly silica, functions to limit the potential extent of digestion. Rate of passage essentially competes with rate of digestion for fiber particles as they pass through the rumen; therefore it is inversely related to the apparent extent of digestion. Passage rate is associated with feed intake level and particle size, although other factors such as type of diet and animal physiology may be important.  相似文献   

2.
Passage, comminution and digestion rates of large and small particles were estimated using a rumen evacuation technique and total faecal collection with five lactating dairy cows in a 5 × 5 Latin square experiment. Two grass and two red clover silages harvested at early and late primary growth stages and a 1:1 mixture of late harvest grass and early harvest red clover were the dietary treatments. Cows received 9.0 kg supplementary concentrate per day. Ruminal contents and faeces were divided into large (>1.25 mm) and small (1.25–0.038 mm) particles by wet sieving. Indigestible neutral detergent fibre (iNDF) was determined by 12 days ruminal in situ incubation followed by neutral detergent extraction. Plant species did not affect ruminal particle size distribution, whereas advancing forage maturity decreased the proportion of large particles for both grass and red clover silage diets. Ruminal pool size of iNDF was higher (P<0.001) with red clover compared to grass silage diets. Ruminal passage rates of iNDF and potentially digestible NDF (pdNDF) increased with decreasing particle size (P<0.01). Passage rate of iNDF for small particles was slower (P<0.01) when red clover compared to grass silage diets were fed. Particle comminution rate in the rumen was slower (P<0.001) with red clover compared to grass silage diets and it increased (P<0.01) with advancing forage maturity. The contribution of particle comminution to ruminal mean retention time of iNDF in the ruminal large particle pool was smaller (P<0.01) in red clover compared to grass silage diets and it increased (P<0.05) with the mixed silage compared to the separate silages. Passage rate of pdNDF for both large and small particles was not affected by dietary treatments. Digestion rate of pdNDF for large particles was faster (P<0.001) with red clover compared to grass silage diets. Differences in ruminal passage and digestion rates of the large and small particles, in addition to differences in the passage and digestion rates of red clover compared to grass silage diets, emphasize the need to consider particle size and forage type in metabolic models predicting feed intake and fibre digestibility in ruminants.  相似文献   

3.
Ruminant animals digest cellulose via a symbiotic relationship with ruminal microorganisms. Because feedstuffs only remain in the rumen for a short time, the rate of cellulose digestion must be very rapid. This speed is facilitated by rumination, a process that returns food to the mouth to be rechewed. By decreasing particle size, the cellulose surface area can be increased by up to 106-fold. The amount of cellulose digested is then a function of two competing rates, namely the digestion rate ( K d) and the rate of passage of solids from the rumen ( K p). Estimation of bacterial growth on cellulose is complicated by several factors: (1) energy must be expended for maintenance and growth of the cells, (2) only adherent cells are capable of degrading cellulose and (3) adherent cells can provide nonadherent cells with cellodextrins. Additionally, when ruminants are fed large amounts of cereal grain along with fiber, ruminal pH can decrease to a point where cellulolytic bacteria no longer grow. A dynamic model based on stella ® software is presented. This model evaluates all of the major aspects of ruminal cellulose degradation: (1) ingestion, digestion and passage of feed particles, (2) maintenance and growth of cellulolytic bacteria and (3) pH effects.  相似文献   

4.
Three primiparous dairy cows in early lactation with cannulas in rumen, duodenum and ileum were used in a 3×3 Latin square design to study effects of expander treatment of a barley-based concentrate. The concentrate was either pelleted at 75–80°C or expander treated at 125–130°C prior to pelleting. The diets consisted of 6.7 kg DM of grass silage and 10 kg DM of (1) 100% pelleted, (2) 50% pelleted and 50% expanded or (3) 100% expanded concentrate. The diets were offered as a mixed ration in four equal meals daily. Ruminal fermentation, bacterial N synthesis, duodenal, ileal and faecal flow of nutrients, and animal performance were monitored. Expander treatment numerically increased ruminal digestion of starch, which explained the observed increase in ruminal VFA concentration and the lowered ruminal pH (P<0.05). The proportion of butyrate in rumen liquid increased, whereas the proportion of propionate decreased in the expanded compared to the pelleted treatment (P<0.05). Expander treatment tended to increase rumen volume and rumen NDF pool size. Ruminal digestion of NDF was numerically lower in the expanded than in the pelleted treatment. No differences in bacterial N synthesis or efficiency of synthesis were observed among treatments. Expander treatment numerically increased the duodenal flow of non-ammonia N (NAN) and amino acid N (AAN), and seemed to increase the flow of non-ammonia non-bacterial N (NANBN) to the duodenum to a similar extent as was indicated by nylon bag studies. Milk production and milk fat and protein content were increased by the expander treatment (P<0.05), indicating that expander treatment increased the supply of nutrients for milk production.  相似文献   

5.
Ruminal microbial populations, fermentation characteristics, digestibility, and liquid flow rates in two ruminally cannulated bison and two ruminally cannulated Hereford steers fed a prairie hay diet were compared. No significant differences in anaerobic bacterial counts, volatile fatty acid concentrations, or ruminal pHs were evident between bison and cattle. Also, no significant differences in neutral detergent fiber digestibility, indigestible fiber retention time, or intake were detected between bison and cattle, although cattle had higher levels (P less than 0.08) of ruminal dry matter and indigestible fiber than bison. Bison had a smaller (P = .02) ruminoreticular volume, faster liquid dilution rates, and faster liquid turnover times than cattle. The average ruminal ammonia nitrogen concentration was higher (P = 0.02) in bison (1.17 mg/dl) than in cattle (0.79 mg/dl). Total ciliate protozoal counts and cell volume were greater (P = 0.07) in bison (32.8 x 10(4)/g and 407.1 x 10(-4) ml/g, respectively) than in cattle (15.7 x 10(4)/g and 162.2 x 10(-4) ml/g, respectively). Bison harbored higher (P less than 0.02) numbers of Dasytricha spp., Eudiplodinium maggii, Eudiplodinium bursa, and Epidinium spp. than cattle and possessed a type B protozoan population. The cattle possessed a mixed type A-type B population that was characterized by Ophryoscolex spp. and Polyplastron spp. in association with low concentrations of Epidinium spp. and Eudiplodinium maggii.  相似文献   

6.
Ruminal microbial populations, fermentation characteristics, digestibility, and liquid flow rates in two ruminally cannulated bison and two ruminally cannulated Hereford steers fed a prairie hay diet were compared. No significant differences in anaerobic bacterial counts, volatile fatty acid concentrations, or ruminal pHs were evident between bison and cattle. Also, no significant differences in neutral detergent fiber digestibility, indigestible fiber retention time, or intake were detected between bison and cattle, although cattle had higher levels (P less than 0.08) of ruminal dry matter and indigestible fiber than bison. Bison had a smaller (P = .02) ruminoreticular volume, faster liquid dilution rates, and faster liquid turnover times than cattle. The average ruminal ammonia nitrogen concentration was higher (P = 0.02) in bison (1.17 mg/dl) than in cattle (0.79 mg/dl). Total ciliate protozoal counts and cell volume were greater (P = 0.07) in bison (32.8 x 10(4)/g and 407.1 x 10(-4) ml/g, respectively) than in cattle (15.7 x 10(4)/g and 162.2 x 10(-4) ml/g, respectively). Bison harbored higher (P less than 0.02) numbers of Dasytricha spp., Eudiplodinium maggii, Eudiplodinium bursa, and Epidinium spp. than cattle and possessed a type B protozoan population. The cattle possessed a mixed type A-type B population that was characterized by Ophryoscolex spp. and Polyplastron spp. in association with low concentrations of Epidinium spp. and Eudiplodinium maggii.  相似文献   

7.
Physiological systems models for ruminant animals are used to predict the extent of ruminal carbohydrate digestion, based on rates of intake, digestion, and passage to the lower tract. Digestion of feed carbohydrates is described in these models by a first-order rate constant. Recently, an in vitro gas production technique has been developed to determine the digestion kinetics in batch fermentation, and nonlinear mathematical models have been fitted to the cumulative gas production data from these experiments. In this paper, we present an analysis that converts these gas production models to an effective first-order rate constant that can be used directly in rumen systems models. The analysis considers the digestion of an incremental mass of substrate entering the rumen. The occurrence of passage is represented probabilistically, and integration through time gives the total mass of substrate and total rate of digestion in the rumen. To demonstrate the analysis, several gas production models are fitted to a sample data set for corn silage, and the effective first-order rate constants are calculated. The rate constants for digestion depend on ruminal passage rate, an interaction that arises from the nonlinearity of the gas production models.  相似文献   

8.
Roughage intake and digestion by ruminants involve complex interactions between the roughage constituents, the microorganisms in the reticulo-rumen (RR) and its motility. Ruminal digestion requires intense activity, ie comminution of feed particles and mixing and propulsion of digesta. The regular repetition of the contraction sequences in the RR every 50 to 70 s subjects the digesta to a consistent pattern of movements. The particles are distributed according to their functional density which depends on the density of the plant structure of the particle, the liquid inside the particle and also the gas, ie on the degree of particle fermentation. An interwoven mat of large low-density particles fills the dorsal sac and the top of the ventral sac of rumen. This mat traps part of the small high density particles. Squeezed by the contractions, the interwoven mat acts like a filter and lets a liquid containing small particles of high density pass into the bottom of the ventral sac. This liquid then flows into the reticulum and passes through the reticulo-omasal orifice (ROO). Chewing during rumination reduces particle size, eliminates particle gas and aids in separating the low-density particles, which are less fermented, from the heavy residues. The outflow of digesta, made possible by the opening of the ROO during the second phase of the reticular contraction, is highly selective. The effluent does not contain particles greater than 2 mm in size in sheep and 4 mm in cattle. This is due to the buoyancy of the large particles in the reticulum, to the self-filtration of the digesta during the passage through the ROO and possibly to backflow from the omasum to the reticulum. Finally, RR motor activity, ie continuously mixing the digesta and monitoring the evacuation of gas and outflow of digesta, allows the homeostasis in the rumen necessary to microbial fermentation. The characteristics of the ingested particles, their rates of size reduction and density increase, the consistency of digesta and the intensity of the rumen wall stimulations are all factors which depend on the nature of feed and intake level. Via mechanisms which are not yet all well known and/or quantified, these factors act upon the efficiency of the mixing and propulsion of the reticulo-ruminal content and thus upon the retention time of the feed in the RR as well as its digestive utilisation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Twenty-four lactating Holstein dairy cows (12 first lactation and 12 multiparous; day in milk = 11 ± 5 days) were allotted to a randomised complete block design in a 2 × 3 factorial with four replicates per treatment to evaluate the effects of two methods of alfalfa feeding (dry and reconstituted to achieve a theoretical dry matter (DM) content of 350 g/kg) and three geometric mean (GM) particle sizes of alfalfa (9.13, 4.51 and 1.20 mm) on performance of dairy cows for a period of 28 days. Diets were offered for ad libitum intake as total mixed rations (TMR). The GM particle size, its standard deviation, and the values of physical effectiveness factor of alfalfa and TMR decreased as alfalfa particle size decreased. Reduction of particle size and reconstitution of alfalfa increased the bulk density and the functional specific gravity of alfalfa and rations. Reduction of particle size decreased insoluble dry matter, water-holding capacity, and hydration rate of alfalfa. As particle size decreased, the amount of physically effective NDF in the ration (g/kg) decreased but the daily intake of physically effective NDF (kg/day) increased. Reduction of particle size and reconstitution increased dry matter intake (DMI) and ruminal passage rate, but reduced NDF and ash digestibilities, ruminal pH, N-NH3, milk fat, total chewing activity, rumination and eating time, total and ruminal mean retention time, and time delay of marker. Increased functional specific gravity, from reduced forage particle size and the reconstitution of alfalfa, was the most important factor influencing DMI, milk composition, and chewing activity.  相似文献   

10.
Batch experiments were performed to investigate the influence of cellulose particle size and pH on the anaerobic degradation of crystalline cellulose by ruminal microbes. At a particle size of 50 μm there was a higher hydrolysis and acidogenesis rate, and a reduced degradation time, than for 100-μm particles. Reduction in cellulose particle size resulted in decreased methane production, but an increase of soluble products. Cellulose degradation increased with pH from pH 6.0 to 7.5, whereas at pH⩽5.5 there was no degradation. The inhibitory effect of low pH (⩽5.5) on ruminal microbes was not completely remedied even when the pH of the medium was adjusted to a neutral range. In an anaerobic cellulosic waste degrading system inoculated with ruminal microbes the fermentation system should therefore be maintained above pH 6.0. In all cases, volatile fatty acids were the major water-soluble products of cellulose degradation; acetate and propionate accounted for more than 90% of the volatile fatty acid total.  相似文献   

11.
An improved understanding of the role of forage quality on the processes of particle dynamics and turnover is important for the development of healthier and cost-effective feeding strategies that aim at lowering the proportions of concentrates in the diets of cattle. The aim of this study was to evaluate the effects of feeding hays of different qualities on particle dynamics, digestion kinetics and turnover in the gastrointestinal tract (GIT). Three non-lactating, rumen fistulated Holstein cows were fed diets consisting exclusively of hay with either low quality [Group LH; 605 ± 12.4 g/kg neutral detergent fibre (NDF) and 63 ± 4.7 g/kg crude protein (CP)] or good quality (Group GH; 551 ± 20.1 g/kg NDF and 116 ± 3.6 g/kg CP). Data showed that in situ dry matter (DM) disappearance of the soluble fraction was greater for Group GH (p < 0.05). Feeding good quality hay also lowered the proportion of particles >1.18 mm particularly during the eating process (p < 0.05). Changes in the particle size occurring afterwards were greater for Group GH as well (p < 0.05); approximately 30% in the comminution in the particle size occurred postruminally. Feeding hay of good quality lowered DM content of solid rumen digesta (p < 0.05), accelerated (p < 0.05) the turnover rate of DM and NDF in the GIT and increased DM intake (p < 0.05). In conclusion, feeding forages of better quality significantly promoted degradation processes and kinetics in the GIT with positive effects on turnover rate of digesta and feed intake in Holstein cows.  相似文献   

12.
Ruminal nitrogen degradation and intestinal digestibility (ID) of the undegraded nitrogen of three sunflower meals were determined on three wethers fitted with rumen cannulae and T-type duodenal cannulae using nylon bags. Meals were obtained from semi-dehulled seeds by conventional hexane extraction (samples SD1 and SD2) or from whole seeds by a discontinuous procedure of pressing and hexane extraction (sample W), which causes a superior thermal effect. Therefore, effective degradability of nitrogen for the W sample (0.537) was lower (P < 0.001) than for conventional meals. Between the latter, SD2 had a lower value (P = 0.019) than SD1 (0.776 and 0.812, respectively). ID decreased in all meals (P < 0.001) as the ruminal incubation time (t) increased. This evolution could be described accurately by an exponential curve as ID = s + he(-kit). A method is proposed for estimating the proportion of undegraded ruminal nitrogen digested in the intestines (Di) from 1) the above equation, 2) the undegradable (r) and the insoluble and potentially degradable (b) nitrogen contents of the feed and the degradation rate of the last fraction (k(d)), and 3) the rumen outflow rate of particles (k(p)). The Di value is shown to be: [equation: see text] The percentages of nitrogen from digested feed in the intestines obtained with this method were 15.1, 17.2 and 39.0 for SD1, SD2 and W, respectively. Resulting effective ID values of undegraded nitrogen were 0.804, 0.767 and 0.844. Undigested nitrogen after ruminal and intestinal incubations decreased in linear and quadratic form in all meals as ruminal incubation time increased.  相似文献   

13.
Effect of phenolic monomers on ruminal bacteria   总被引:2,自引:0,他引:2  
Ruminal bacteria were subjected to a series of phenolic compounds in various concentrations to acquire fundamental information on the influence on growth and the potential limits to forage utilization by phenolic monomers. Ruminococcus albus 7, Ruminococcus flavefaciens FD-1, Butyrivibrio fibrisolvens 49, and Lachnospira multiparus D-32 were tested against 1, 5, and 10 mM concentrations of sinapic acid, syringaldehyde, syringic acid, ferulic acid, vanillin, vanillic acid, p-coumaric acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and hydrocinnamic acid. Responses were variable and dependent on the phenolic compound and microbial species. Compounds especially toxic (i.e., resulting in poor growth, effect on several species, dose-related response) were p-coumaric acid and p-hydroxybenzaldehyde, and adaptation to the toxins did not occur after three 24-h periods. Syringic, p-hydroxybenzoic, and hydrocinnamic acids stimulated growth of all four species and also stimulated filter paper degradation by R. flavefaciens. None of the stimulatory compounds supported microbial growth in the absence of carbohydrates. In vitro dry matter digestibility of cellulose (Solka-Floc) was not stimulated by any of the phenolic compounds (10 mM), but the cinnamic acids and benzoic aldehydes (10 mM) reduced (P less than 0.05) digestion by the mixed population in ruminal fluid. Growth of R. flavefaciens in the presence of p-hydroxybenzoic acid (10 mM) or p-coumaric acid (5 mM) resulted in recognizable alterations in cell ultrastructure. Both phenolics caused a reduction in cell size (P less than 0.05), and p-coumaric acid caused a reduction in capsular size (P less than 0.05) and produced occasional pleomorphic cells.  相似文献   

14.
Effect of phenolic monomers on ruminal bacteria.   总被引:11,自引:10,他引:1       下载免费PDF全文
Ruminal bacteria were subjected to a series of phenolic compounds in various concentrations to acquire fundamental information on the influence on growth and the potential limits to forage utilization by phenolic monomers. Ruminococcus albus 7, Ruminococcus flavefaciens FD-1, Butyrivibrio fibrisolvens 49, and Lachnospira multiparus D-32 were tested against 1, 5, and 10 mM concentrations of sinapic acid, syringaldehyde, syringic acid, ferulic acid, vanillin, vanillic acid, p-coumaric acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and hydrocinnamic acid. Responses were variable and dependent on the phenolic compound and microbial species. Compounds especially toxic (i.e., resulting in poor growth, effect on several species, dose-related response) were p-coumaric acid and p-hydroxybenzaldehyde, and adaptation to the toxins did not occur after three 24-h periods. Syringic, p-hydroxybenzoic, and hydrocinnamic acids stimulated growth of all four species and also stimulated filter paper degradation by R. flavefaciens. None of the stimulatory compounds supported microbial growth in the absence of carbohydrates. In vitro dry matter digestibility of cellulose (Solka-Floc) was not stimulated by any of the phenolic compounds (10 mM), but the cinnamic acids and benzoic aldehydes (10 mM) reduced (P less than 0.05) digestion by the mixed population in ruminal fluid. Growth of R. flavefaciens in the presence of p-hydroxybenzoic acid (10 mM) or p-coumaric acid (5 mM) resulted in recognizable alterations in cell ultrastructure. Both phenolics caused a reduction in cell size (P less than 0.05), and p-coumaric acid caused a reduction in capsular size (P less than 0.05) and produced occasional pleomorphic cells.  相似文献   

15.
Weight increase of cotton fiber in an 18% NaOH solution, termed “alkali-centrifuge” or “AC” value, was measured after incubation of either 1 g or 100 mg of the fiber in ruminal fluid. The AC response was a sensitive measure of cellulolytic activity. Thus, fiber incubated at 21 and 51°C exhibited major AC increases even when direct weight losses of the unswollen fiber were less than 2%. Similarly, progressive additions of acetic acid to ruminal fluid progressively depressed both AC response and direct weight loss, but the former was still easily measurable when the latter was not. In tightly closed, completely filled vials with high ratio of ruminal fluid to sample, AC increased greatly and rapidly, i.e., in 6 h. This time could be further reduced to 2 h by overnight “preincubation” of the ruminal fluid with cotton fiber before starting the test incubation. Certain surfactants used to aid wetting of the fiber had a low but measurable potency in inhibiting cellulose digestion, but other surfactants were non-inhibitory. The AC response was maintained when ruminal fluid was diluted with an equal amount of McDougall's “artificial saliva” solution.  相似文献   

16.
The objective of this study was to examine the effects of formulation and process variables on particle size and other characteristics of a spray-dried model protein, bovine serum albumin (BSA), using a partial factorial design for experiments. Formulation variables tested include concentration and zinc:protein complexation ratio. Process variables explored were inlet temperature, liquid feed rate, drying air flow rate, and atomizing nitrogen pressure on a lab-scale spray dryer. Statistical data analysis was used to determine F ratios for each of the inputs, which provided a means of ranking the importance of variables relative to one another for each powder characteristic of interest. It was found that protein concentration and atomizing nitrogen pressure had the greatest effects on the particle size of the protein powder. For determining product yield, results showed that protein concentration was the critical variable. Finally, the outlet temperature was mostly influenced by inlet temperature and liquid feed rate. Mathematical models based on these input-output relationships were constructed; these models provide insight into some of the controllable variables of the spray-drying process. Published: March 20, 2002  相似文献   

17.
The aim of this study was to evaluate the effect of nano-selenium (NS) and yeast?Cselenium (YS) supplementation on feed digestibility, rumen fermentation, and urinary purine derivatives in sheep. Six male ruminally cannulated sheep, average 43.32?±?4.8?kg of BW, were used in a replicated 3?×?3 Latin square experiment. The treatments were control (without NS and YS), NS with 4?g nano-Se (provide 4?mg Se), and YS with 4?g Se-yeast (provide 4?mg Se) per kilogram of diet dry matter (DM), respectively. Experimental periods were 25?days with 15?days of adaptation and 10?days of sampling. Ruminal pH, ammonia N concentration, molar proportion of propionate, and ratio of acetate to propionate were decreased (P?<?0.01), and total ruminal VFA concentration was increased with NS and YS supplementation (P?<?0.01). In situ ruminal neutral detergent fiber (aNDF) degradation of Leymus chinensis (P?<?0.01) and crude protein (CP) of soybean meal (P?<?0.01) were significantly improved by Se supplementation. Digestibilities of DM, organic matter, crude protein, ether extract, aNDF, and ADF in the total tract and urinary excretion of purine derivatives were also affected by feeding Se supplementation diets (P?<?0.01). Ruminal fermentation was improved by feeding NS, and feed conversion efficiency was also increased compared with YS (P?<?0.01). We concluded that nano-Se can be used as a preferentially available selenium source in ruminant nutrition.  相似文献   

18.
Carbohydrates are the main source of energy in ruminants. Their site, extent and kinetics of digestion highly impact the amount and profile of nutrients delivered to peripheral tissues, and the responses of the animal, i.e. ingestion, efficiency of production, N and methane excretion, quality of products and welfare. Development of multi-objective feed evaluation systems thus requires a more integrated quantitative knowledge on carbohydrate digestion and yield of terminal products, as well as on their metabolism by splanchnic tissues. The objective of this paper is to review (i) quantitative knowledge on fibre, starch and sugar digestion, volatile fatty acids (VFA) and glucose production and splanchnic metabolism and (ii) modelling approaches which aim at representing and/or predicting nutrient fluxes in the digestive tract, portal and hepatic drainage. It shows that the representation of carbohydrate digestion and VFA yield is relatively homogeneous among models. Although published quantitative comparisons of these models are scarce, they stress that prediction of fibre digestion and VFA yield and composition is still not good enough for use in feed formulation, whereas prediction of microbial N yield and ruminal starch digestion seems to be more satisfactory. Uncertainties on VFA stoichiometric coefficients and absorption rates may partly explain the poor predictions of VFA. Hardly any mechanistic models have been developed on portal-drained viscera (PDV) metabolism whereas a few exist for liver metabolism. A qualitative comparison of these models is presented. Most are focused on dairy cows and their level of aggregation in the representation of nutrient fluxes and metabolism highly differs depending on their objectives. Quantitative comparison of these models is still lacking. However, recent advances have been achieved with the empirical prediction of VFA and glucose production and fluxes through PDV and liver based on the current INRA feed evaluation system. These advances are presented. They illustrate that empirical prediction of ruminal VFA and intestinal glucose production can be evaluated by comparison with measured net portal net fluxes. We also illustrate the potential synergy between empirical and mechanistic modelling. It is concluded that concomitant empirical and mechanistic approach may likely help to progress towards development of multi-objective feed evaluation systems based on nutrient fluxes.  相似文献   

19.
As a result of pioneering work of Hofmann (1973, 1989), nutritional ecologists classify ruminants into three feeding-type categories: browsers (concentrate feeders), grazers, and intermediate or mixed feeders. Hofmann proposed that these feeding types result from evolutionary adaptations in the anatomy of the digestive system and that one consequence is shorter retention of the digesta in the rumen of browsers, and thus a decreased efficiency of fiber digestion relative to that of grazers. We examined the hypotheses that (1) fiber digestion of browsers is lower than that of grazers, (2) salivary gland size is larger in all browsers than in grazers, (3) the browser's larger salivary glands produce larger volumes of thin serous saliva than those of grazers, and (4) thus, browsers have higher liquid passage rates than do grazers. We found that the extent of fiber digestion is not significantly different between browsers and grazers, although fiber digestion is positively related to herbivore size. In general, salivary gland size is approximately 4 times larger in browsers than grazers, but some browsers (e.g., greater kudu) have small, grazer-sized salivary glands. Resting (non-feeding or ruminating) saliva flow rates of mule deer (browser) and domestic sheep and cattle (grazers) were not significantly different from each other. Finally, ruminal liquid flow rates were not different between feeding types. We conclude that many of Hofmann's nutritional and physiological interpretations of anatomical differences amongst ruminants are not supportable.  相似文献   

20.
The ruminal microbiome of cattle plays an important role not only in animal health and productivity but also in food safety and environment. Microbial profiles of rumen fluid obtained from dairy cows fed on three different fiber/starch diet compositions were characterized. Tagged 16S rRNA gene pyrosequencing and statistical analysis revealed that the dominant ruminal bacteria shared by all three sample groups belonged to phyla Bacteroidetes, Firmicutes, and Proteobacteria. However, the relative abundance of these bacterial groups was markedly affected by diet composition. In animals fed with a high fiber diet, the fibrolytic and cellulolytic bacteria Lachnospiraceae, Ruminococcaceae, and Fibrobacteraceae were found in highest abundance compared with animals fed other diets with lower fiber content. The polysaccharide-degrading Prevotellaceae and Flavobacteriaceae bacteria were most abundant in the rumen of cows fed on diet with the highest starch content. These data highlight the ruminal microbiome’s ability to adapt to feed composition and also provide a basis for the development of feed formulation systems designed to improve livestock productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号