首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《The Journal of cell biology》1990,111(6):3065-3076
Using synthetic peptides, we have identified two distinct regions of the glycoprotein SPARC (Secreted Protein Acidic and Rich in Cysteine) (osteonectin/BM-40) that inhibit cell spreading. One of these sites also contributes to the affinity of SPARC for extracellular matrix components. Peptides representing subregions of SPARC were synthesized and antipeptide antibodies were produced. Immunoglobulin fractions of sera recognizing an NH2-terminal peptide (designated 1.1) blocked SPARC- mediated anti-spreading activity. Furthermore, when peptides were added to newly plated endothelial cells or fibroblasts, peptide 1.1 and a peptide corresponding to the COOH terminal EF-hand domain (designated 4.2) inhibited cell spreading in a dose-dependent manner. These peptides exhibited anti-spreading activity at concentrations from 0.1 to 1 mM. The ability of peptides 1.1 and 4.2 to modulate cell shape was augmented by an inhibitor of protein synthesis and was blocked by specific antipeptide immunoglobulins. In addition to blocking cell spreading, peptide 4.2 competed for binding of [125I]SPARC and exhibited differential affinity for extracellular matrix molecules in solid-phase binding assays. The binding of peptide 4.2 to matrix components was Ca+(+)-dependent and displayed specificities similar to those of native SPARC. These studies demonstrate that both anti- spreading activity and affinity for collagens are functions of unique regions within the SPARC amino acid sequence. The finding that two separate regions of the SPARC protein contribute to its anti-spreading activity lead us to propose that multiple regions of the protein act in concert to regulate the interactions of cells with their extracellular matrix.  相似文献   

2.
Guanylate cyclase-activating proteins (GCAPs) are neuronal calcium sensors that activate membrane bound guanylate cyclases (EC 4.6.1.2.) of vertebrate photoreceptor cells when cytoplasmic Ca2+ decreases during illumination. GCAPs contain four EF-hand Ca2+-binding motifs, but the first EF-hand is nonfunctional. It was concluded that for GCAP-2, the loss of Ca2+-binding ability of EF-hand 1 resulted in a region that is crucial for targeting guanylate cyclase [Ermilov, A.N., Olshevskaya, E.V. & Dizhoor, A.M. (2001) J. Biol. Chem.276, 48143-48148]. In this study we tested the consequences of mutations in EF-hand 1 of GCAP-1 with respect to Ca2+ binding, Ca2+-induced conformational changes and target activation. When the nonfunctional first EF-hand in GCAP-1 is replaced by a functional EF-hand the chimeric mutant CaM-GCAP-1 bound four Ca2+ and showed similar Ca2+-dependent changes in tryptophan fluorescence as the wild-type. CaM-GCAP-1 neither activated nor interacted with guanylate cyclase. Size exclusion chromatography revealed that the mutant tended to form inactive dimers instead of active monomers like the wild-type. Critical amino acids in EF-hand 1 of GCAP-1 are cysteine at position 29 and proline at position 30, as changing these to glycine was sufficient to cause loss of target activation without a loss of Ca2+-induced conformational changes. The latter mutation also promoted dimerization of the protein. Our results show that EF-hand 1 in wild-type GCAP-1 is critical for providing the correct conformation for target activation.  相似文献   

3.
The structure and function of cytosolic Ca(2+)-binding proteins containing EF-hands are well understood. Recently, the presence of EF-hands in an extracellular protein was for the first time proven by the structure determination of the EC domain of BM-40 (SPARC (for secreted protein acidic and rich in cysteine)/osteonectin) (Hohenester, E., Maurer, P., Hohenadl, C., Timpl, R., Jansonius, J. N., and Engel, J. (1996) Nat. Struct. Biol. 3, 67-73). The structure revealed a pair of EF-hands with two bound Ca(2+) ions. Two unusual features were noted that distinguish the extracellular EF-hands of BM-40 from their cytosolic counterparts. An insertion of one amino acid into the loop of the first EF-hand causes a variant Ca(2+) coordination, and a disulfide bond connects the helices of the second EF-hand. Here we show that the extracellular EF-hands in the BM-40 EC domain bind Ca(2+) cooperatively and with high affinity. The EC domain is thus in the Ca(2+)-saturated form in the extracellular matrix, and the EF-hands play a structural rather than a regulatory role. Deletion mutants demonstrate a strong interaction between the EC domain and the neighboring FS domain, which contributes about 10 kJ/mol to the free energy of binding and influences cooperativity. This interaction is mainly between the FS domain and the variant EF-hand 1. Certain mutations of Ca(2+)-coordinating residues changed affinity and cooperativity, but others inhibited folding and secretion of the EC domain in a mammalian cell line. This points to a function of EF-hands in extracellular proteins during biosynthesis and processing in the endoplasmic reticulum or Golgi apparatus.  相似文献   

4.
SPARC (secreted protein, acidic and rich in cysteine) is an extracellular, Ca(2+)-binding protein that inhibits the spreading of newly plated cells and elicits a rounded morphology in spread cells. In this study, I investigated whether the rounding effect of SPARC depends on the ability of the protein to chelate Ca2+ at the cell surface. Bovine aortic endothelial cells were plated in the presence of different concentrations of SPARC and Ca2+; control experiments were performed with 1 mM EGTA and with Mg2+. Quantitative estimates of cell rounding were calculated according to a rounding index. SPARC, at concentrations between 0.15 and 0.58 microM, elicited rounding (or prevented spreading) of cells cultured for 16-38 h in 0.5-2.0 mM Ca2+. Addition of 0.5-2.0 mM Mg2+ to cells previously rounded in the presence of SPARC did not abrogate the effect of SPARC. When the levels of extracellular Ca2+ were adjusted with 1 mM EGTA to maximum values ranging from 7.1 to 320 microM, cells displayed a rounded morphology in the presence of exogenous SPARC. Although the rounding induced by 1 mM EGTA was essentially reversed by the inclusion of 2 mM Ca2+, cultures containing these reagents together with SPARC maintained the rounded phenotype. These results do not support a mechanism that involves the abstraction of Ca2+ from proteins at the cell surface or the provision of Ca2+ from native extracellular SPARC to cells. Therefore, SPARC does not appear to act as a local chelator of extracellular Ca2+ and Mg2+ and presumably exerts its function as a modulator of cell shape via a different pathway.  相似文献   

5.
Vitronectin (VN), secreted into the bloodstream by liver hepatocytes, is known to anchor epithelial cells to basement membranes through interactions with cell surface integrin receptors. We report here that VN is also synthesized by urothelial cells of urothelium in vivo and in vitro. In situ hybridization, dideoxy sequencing, immunohistochemistry, and ELISA of urothelial cell mRNA, cDNA, tissue, and protein extracts demonstrated that the VN gene is active in vivo and in vitro. The expression of VN by urothelium is hypothesized to constitute one of several pathways that anchor basal cells to an underlying substratum and explains why urothelial cells adhere to glass and propagate under serum-free conditions. Therefore, two sources of VN in the human urinary bladder are recognized: 1) localized synthesis by urothelial cells and 2) extravasation of liver VN through fenestrated capillaries. When human plasma was fractionated by denaturing heparin affinity chromatography, VN was isolated in a biologically active form that supported rapid spreading of urothelial cells in vitro under serum-free conditions. This activity was inhibited by the matricellular protein SPARC via direct binding of VN to SPARC through a Ca(+2)-dependent mechanism. A novel form of VN, isolated from the same heparin affinity chromatography column and designated as the VN(c) chromatomer, also supported cell spreading but failed to interact with SPARC. Therefore, the steady-state balance among urothelial cells, their extracellular milieu, and matricellular proteins constitutes a principal mechanism by which urothelia are anchored to an underlying substrata in the face of constant bladder cycling.  相似文献   

6.
SPARC (Secreted Protein Acidic and Rich in Cysteine) is a Ca+2-binding glycoprotein that is differentially associated with morphogenesis, remodeling, cellular migration, and proliferation. We show here that exogenous SPARC, added to cells in culture, was associated with profound changes in cell shape, caused rapid, partial detachment of a confluent monolayer, and inhibited spreading of newly plated cells. Bovine aortic endothelial cells, exposed to 2-40 micrograms SPARC/ml per 2 x 10(6) cells, exhibited a rounded morphology in a dose-dependent manner but remained attached to plastic or collagen-coated surfaces. These round cells synthesized protein, uniformly excluded trypan blue, and grew in aggregates after replating in media without SPARC. SPARC caused rounding of bovine endothelial cells, fibroblasts, and smooth muscle cells; however, the cell lines F9, PYS-2, and 3T3 were not affected. The activity of native SPARC was inhibited by heat denaturation and prior incubation with anti-SPARC IgG. The effect of SPARC on endothelial cells appeared to be independent of the rounding phenomenon produced by the peptide GRGDSP. Immunofluorescence localization of SPARC on endothelial cells showed preferential distribution at the leading edges of membranous extensions. SPARC bound Ca+2 in both amino- and carboxyl-terminal (EF-hand) domains and required this cation for maintenance of native structure. Solid-phase binding assays indicated a preferential affinity of native SPARC for several proteins comprising the extracellular matrix, including types III and V collagen, and thrombospondin. This binding was saturable, Ca+2 dependent, and inhibited by anti-SPARC IgG. Endothelial cells also failed to spread on a substrate of native type III collagen complexed with SPARC. We propose that SPARC is an extracellular modulator of Ca+2 and cation-sensitive proteins or proteinases, which facilitates changes in cellular shape and disengagement of cells from the extracellular matrix.  相似文献   

7.
We have screened a human cDNA library using an expressed sequence tag related to the BM-40/secreted protein, acidic and rich in cysteine (SPARC)/osteonectin family of proteins and isolated a novel cDNA. It encodes a protein precursor of 424 amino acids that consists of a signal peptide, a follistatin-like domain, a Ca2+-binding domain, a thyroglobulin-like domain, and a C-terminal region with two putative glycosaminoglycan attachment sites. The protein is homologous to testican-1 and was termed testican-2. Testican-1 is a proteoglycan originally isolated from human seminal plasma that is also expressed in brain. Northern blot hybridization of testican-2 showed a 6.1-kb mRNA expressed mainly in CNS but also found in lung and testis. A widespread expression in multiple neuronal cell types in olfactory bulb, cerebral cortex, thalamus, hippocampus, cerebellum, and medulla was detected by in situ hybridization. A recombinant fragment consisting of the Ca2+-binding EF-hand domain and the thyroglobulin-like domain of testican-2 showed a reversible Ca2+-dependent conformational change in circular dichroism studies. Testican-1 and -2 form a novel Ca2+-binding proteoglycan family built of modular domains with the potential to participate in diverse steps of neurogenesis.  相似文献   

8.
J Engel  W Taylor  M Paulsson  H Sage  B Hogan 《Biochemistry》1987,26(22):6958-6965
SPARC, BM-40, and osteonectin are identical or very closely related extracellular proteins of apparent Mr 43,000 (Mr 33,000 predicted from sequence). They were originally isolated from parietal endoderm cells, basement membrane producing tumors, and bone, respectively, but are rather widely distributed in various tissues. In view of the calcium binding activity reported for osteonectin, we analyzed the SPARC sequence and found two putative calcium binding domains. One is an N-terminal acidic region with clusters of glutamic acid residues. This region, although neither gamma-carboxylated nor homologous, resembles the gamma-carboxyglutamic acid (Gla) domain of vitamin K dependent proteins of the blood clotting system in charge density, size of negatively charged clusters, and linkage to the rest of the molecule by a cysteine-rich domain. The other region is an EF-hand calcium binding domain located near the C-terminus. A disulfide bond between the E and F helix is predicted from modeling the EF-hand structure with the known coordinates of intestinal calcium binding protein. The disulfide bridge apparently serves to stabilize the isolated calcium loop in the extracellular protein. As observed for cytoplasmic EF-hand-containing proteins and for Gla domain containing proteins, a major conformational transition is induced in BM-40 upon binding of several Ca2+ ions. This is accompanied by a 35% increase in alpha-helicity. A pronounced sigmoidicity of the dependence of the circular dichroism signal at 220 nm on calcium concentration indicates that the process is cooperative. In view of its properties, abundance, and wide distribution, it is proposed that SPARC/BM-40/osteonectin has a rather general regulatory function in calcium-dependent processes of the extracellular matrix.  相似文献   

9.
GCAP-2, a mammalian photoreceptor-specific protein, is a Ca2+-dependent regulator of the retinal membrane guanylyl cyclases (Ret-GCs). Sensing the fall in intracellular free Ca2+ after photo-excitation, GCAP-2 stimulates the activity of Ret-GC leading to cGMP production. Like other members of the recoverin superfamily, GCAP-2 is a small N-myristoylated protein containing four EF-hand consensus motifs. In this study, we demonstrate that like recoverin and neurocalcin, GCAP-2 alters its conformation in response to Ca2+-binding as measured by a Ca2+-dependent change in its far UV CD spectrum. Differences in the conformation of the Ca2+-bound and Ca2+-free forms of GCAP-2 were also observed by examining their relative susceptibility to V8 protease. In contrast to recoverin, we do not observe proteolytic cleavage of the myristoylated N-terminus of Ca2+-bound GCAP-2. NMR spectra also show that, in contrast to recoverin, the chemical environment of the N-terminus of GCAP-2 is not dramatically altered by Ca2+ binding. Despite the similarity of GCAP-2 and recoverin, the structural consequences of Ca2+-binding for these two proteins are significantly dissimilar.  相似文献   

10.
Recoverin belongs to the superfamily of EF-hand Ca2+-binding proteins and operates as a Ca2+-sensor in vertebrate photoreceptor cells, where it regulates the activity of rhodopsin kinase GRK1 in a Ca2+-dependent manner. Ca2+-dependent conformational changes in recoverin are allosterically controlled by the covalently attached myristoyl group. The amino acid sequence of recoverin harbors a unique cysteine at position 38. The cysteine can be modified by the fluorescent dye Alexa647 using a maleimide-thiol coupling step. Introduction of Alexa647 into recoverin did not disturb the biological function of recoverin, as it can regulate rhodopsin kinase activity like unlabeled recoverin. Performance of the Ca2+-myristoyl switch of labeled recoverin was monitored by Ca2+-dependent association with immobilized lipids using surface plasmon resonance spectroscopy. When the Ca2+-concentration was varied, labeled myristoylated recoverin showed a 37%-change in fluorescence emission and a 34%-change in excitation intensity, emission and excitation maxima shifted by 6 and 18 nm, respectively. In contrast, labeled nonmyristoylated recoverin exhibited only minimal changes. Time-resolved fluorescence measurements showed biexponentiell fluorescence decay, in which the slower time constant of 2 ns was specifically influenced by Ca2+-induced conformational changes. A similar influence on the slower time constant was observed with the recoverin mutant RecE85Q that has a disabled EF-hand 2, but no such influence was detected with the mutant RecE121Q (EF-hand 3 is nonfunctional) that contains the myristoyl group in a clamped position. We conclude from our results that Alexa647 bound to cysteine 38 can monitor the conformational transition in recoverin that is under control of the myristoyl group.  相似文献   

11.
Dinitrophenylation of rabbit skeletal sarcoplasmic reticulum ATPase protein   总被引:1,自引:0,他引:1  
The ATPase (ATP phosphohydrolase (EC 3.6.1.3)) protein of rabbit skeletal sarcoplasmic reticulum rapidly incorporated three mol of 1-fluoro-2,4-dinitrobenzene per 10(5) g of protein with little change in the Ca2+-dependent ATPase activity. When 2 additional mol of the reagent were bound the Ca2+-dependent ATPase activity was inhibited. The dinitrophenyl group was located mainly in the ATPase protein and a small amount of the label was found in the proteolipid component of the ATPase preparation as judged by dissociation experiments in sodium dodecyl sulfate. Cysteine and tyrosine residues were dinitrophenylated in the modified ATPase protein. Thiolysis of the dinitrophenylated ATPase protein with 2-mercaptoethanol under various conditions did not restore the Ca2+-dependent ATPase activity. Solubilization of the ATPase protein with sodium deoxycholate increased the reactivity of the reagent and the Ca2+-dependent ATPase activity was inhibited to a greater extent. Dinitrophenylation of the ATPase protein was Ca2+-dependent; in the presence of high Ca2+ the incorporation increased by 50% and a large decrease in the Ca2+-ATPase activity was noted. The half-maximal changes for the incorporation of the reagent and the inhibition of the Ca2+-ATPase activity occurred at 3--4 microgram Ca2+-concentration, consistent with the binding of Ca2+ to high affinity sites on the ATPase protein. These results indicate that the ATPase protein as a Ca2+-free and a Ca2+-bound conformation. The reagent, 1-fluoro-2,4-dinitrobenzene reacts differentially and thus characterizes these two conformations.  相似文献   

12.
Guanylyl cyclase activating protein 1 (GCAP-1), a Ca(2+)/Mg(2+) sensor protein that accelerates retinal guanylyl cyclase (RetGC) in the light and decelerates it in the dark, is inactive in cation-free form. Binding of Mg(2+) in EF-hands 2 and 3 was essential for RetGC activation in the conditions mimicking light adaptation. Mg(2+) binding in EF-hand 2 affected the conformation of a neighboring non-metal binding domain, EF-hand-1, and increased GCAP-1 affinity for RetGC nearly 40-fold compared with the metal-free EF-hand 2. Mg(2+) binding in EF-hand 3 increased GCAP-1 affinity for RetGC 5-fold and its maximal RetGC stimulation 2-fold. Mg(2+) binding in EF-hand 4 affected neither GCAP-1 affinity for RetGC, nor RetGC activation. Inactivation of Ca(2+) binding in EF-hand 4 was sufficient to render GCAP-1 a constitutive activator of RetGC, whereas the EF-hand 3 role in Ca(2+)-dependent deceleration of RetGC was likely to be through the neighboring EF-hand 4. Inactivation of Ca(2+) binding in EF-hand 2 affected cooperativity of RetGC inhibition by Ca(2+), but did not prevent the inhibition. We conclude that 1) Mg(2+) binding in EF-hands 2 and 3, but not EF-hand 4, is essential for the ability of GCAP-1 to activate RetGC in the light; 2) Mg(2+) or Ca(2+) binding in EF-hand 3 and especially in EF-hand 2 is required for high-affinity interaction with the cyclase and affects the conformation of the neighboring EF-hand 1, a domain required for targeting RetGC; and 3) RetGC inhibition is likely to be primarily caused by Ca(2+) binding in EF-hand 4.  相似文献   

13.
Hata S  Sorimachi H  Nakagawa K  Maeda T  Abe K  Suzuki K 《FEBS letters》2001,501(2-3):111-114
Calpain, a Ca(2+)-dependent cytosolic cysteine protease, proteolytically modulates specific substrates involved in Ca(2+)-mediated intracellular events, such as signal transduction, cell cycle, differentiation, and apoptosis. The 3D structure of m-calpain, in the absence of Ca(2+), revealed that the two subdomains (domains IIa and IIb) of the protease domain (II) have an 'open' conformation, probably due to interactions with other domains. Although the presence of an EF-hand structure was once predicted in the protease domain, no explicit Ca(2+)-binding structure was identified in the 3D structure. Therefore, it is predicted that if the protease domain is excised from the calpain molecule, it will have a Ca(2+)-independent protease activity. In this study, we have characterized a truncated human m-calpain that consists of only the protease domain. Unexpectedly, the proteolytic activity was Ca(2+)-dependent, very weak, and not effectively inhibited by calpastatin, a calpain inhibitor. Ca(2+)-dependent modification of the protease domain by the cysteine protease inhibitor, E-64c, was clearly observed as a SDS-PAGE migration change, indicating that the conformational changes of this domain are a result of Ca(2+) binding. These results suggest that the Ca(2+) binding to domain II, as well as to domains III, IV, and VI, is critical in the process of complete activation of calpain.  相似文献   

14.
Recoverin is a neuronal calcium sensor protein that controls the activity of rhodopsin kinase in a Ca(2+)-dependent manner. Mutations in the EF-hand Ca2+ binding sites are valuable tools for investigating the functional properties of recoverin. In the recoverin mutant E121Q (Rec E121Q ) the high-affinity Ca2+ binding site is disabled. The non-myristoylated form of Rec E121Q binds one Ca2+ via its second Ca(2+)-binding site (EF-hand 2), whereas the myristoylated variant does not bind Ca2+ at all. Binding of Ca2+ to non-myristoylated Rec E121Q apparently triggers exposure of apolar side chains, allowing for association with hydrophobic matrices. Likewise, an interaction surface for the recoverin target rhodopsin kinase is constituted upon Ca2+ binding to the non-acylated mutant. Structural changes resulting from Ca(2+)-occupation of EF-hand 2 in myristoylated and non-myristoylated recoverin variants are discussed in terms of critical conditions required for biological activity.  相似文献   

15.
Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic-GMP (cGMP). This hydrolysis promotes the closing of cGMP-gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate cyclase-activating proteins (GCAPs) are a family of proteins that regulate retinal guanylate cyclase (GC) activity in a Ca2+-dependent manner. At high [Ca2+], typical of the dark-adapted state (approximately 500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (approximately 50 nM) that occurs after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish dark-state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 with Ca2+ bound. GCAP3 is an EF-hand Ca2+-binding protein with Ca2+ bound to EF2, 3 and 4, while Ca2+ binding to EF-hand 1 is disabled. GCAP3 contains two domains with the EF-hand motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of Ca2+-binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, cluster around EF1 in the N-terminal domain and may represent the interface with GCs. Five point mutations in the closely related GCAP1 have been linked to the etiology of cone dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by GCAP1 mutations.  相似文献   

16.
de Alba E  Tjandra N 《Biochemistry》2004,43(31):10039-10049
Nucleobindin, also known as calnuc, participates in Ca2+ storage in the Golgi, as well as in other biological processes that involve DNA-binding and protein-protein interactions. We have determined the three-dimensional solution structure of the Ca(2+)-binding domain of nucleobindin by NMR showing that it consists of two EF-hand motifs. The NMR structure indicates that the phi and psi angles of residues in both motifs are very similar, despite the noncanonical sequence of the C-terminal EF-hand, which contains an arginine residue instead of the typical glycine at the sixth position of the 12-residue loop. The relative orientation of the alpha-helices in the N-terminal EF-hand falls within the common arrangement found in most EF-hand structures. In contrast, the noncanonical EF-hand deviates from the average orientation. The two helix-loop-helix moieties are in the open conformation characteristic of the Ca(2+)-bound state. We find that both motifs bind Ca2+ with apparent dissociation constants of 47 and 40 microM for the noncanonical and the canonical EF-hand, respectively. The Ca(2+)-binding domain of nucleobindin is unstructured in the absence of Ca2+ and folds upon Ca2+ addition. NMR relaxation data and structural studies of the folded domain indicate that it undergoes slow dynamics, suggesting that it is floppier and less compact than a globular domain.  相似文献   

17.
Sperm-specific phospholipase C-zeta (PLCzeta) induces Ca2+ oscillations and egg activation when injected into mouse eggs. PLCzeta has such a high Ca2+ sensitivity of PLC activity that the enzyme can be active in resting cells at approximately 100 nM Ca2+, suitable for a putative sperm factor to be introduced into the egg at fertilization (Kouchi, Z., Fukami, K., Shikano, T., Oda, S., Nakamura, Y., Takenawa, T., and Miyazaki, S. (2004) J. Biol. Chem. 279, 10408-10412). In the present structure-function analysis, deletion of EF1 and EF2 of the N-terminal four EF-hand domains caused marked reduction of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-hydrolyzing activity in vitro and loss of Ca2+ oscillation-inducing activity in mouse eggs after injection of RNA encoding the mutant. However, deletion of EF1 and EF2 or mutation of EF1 or EF2 at the x and z positions of the putative Ca2+-binding loop little affected the Ca2+ sensitivity of the PLC activity, whereas deletion of EF1 to EF3 caused 12-fold elevation of the EC50 of Ca2+ concentration. Thus, EF1 and EF2 are important for the PLCzeta activity, and EF3 is responsible for its high Ca2+ sensitivity. Deletion of four EF-hand domains or the C-terminal C2 domain caused complete loss of PLC activity, indicating that both regions are prerequisites for PLCzeta activity. Screening of interactions between the C2 domain and phosphoinositides revealed that C2 has substantial affinity to PI(3)P and, to the lesser extent, to PI(5)P but not to PI(4,5)P2 or acidic phospholipids. PI(3)P and PI(5)P reduced PLCzeta activity in vitro, suggesting that the interaction could play a role for negative regulation of PLCzeta.  相似文献   

18.
Calumenin is a multiple EF-hand Ca2+-binding protein located in endo/sarcoplasmic reticulum of mammalian tissues. In the present study, we cloned two rabbit calumenin isoforms (rabbit calumenin-1 and -2, GenBank Accession Nos. SY225335 and AY225336, respectively) by RT-PCR. Both isoforms contain a 19 aa N-terminal signal sequence, 6 EF-hand domains, and a C-terminal ER/SR retrieval signal, HDEF. Both calumenin isoforms exist in rabbit cardiac and skeletal muscles, but calumenin-2 is the main isoform in skeletal muscle. Presence of calumenin in rabbit sarcoplasmic reticulum (SR) was identified by Western blot analysis. GST-pull down and co-immunoprecipitation experiments showed that ryanodine receptor 1 (RyR1) interacted with calumenin-2 in millimolar Ca2+ concentration range. Experiments of gradual EF-hand deletions suggest that the second EF-hand domain is essential for calumenin binding to RyR1. Adenovirus-mediated overexpression of calumenin-2 in C2C12 myotubes led to increased caffeine-induced Ca2+ release, but decreased depolarization-induced Ca2+ release. Taken together, we propose that calumenin-2 in the SR lumen can directly regulate the RyR1 activity in Ca2+-dependent manner.  相似文献   

19.
20.
We have previously identified a single inhibitory Ca2+-binding site in the first EF-hand of the essential light chain of Physarum conventional myosin (Farkas, L., Malnasi-Csizmadia, A., Nakamura, A., Kohama, K., and Nyitray, L. (2003) J. Biol. Chem. 278, 27399-27405). As a general rule, conformation of the EF-hand-containing domains in the calmodulin family is "closed" in the absence and "open" in the presence of bound cations; a notable exception is the unusual Ca2+-bound closed domain in the essential light chain of the Ca2+-activated scallop muscle myosin. Here we have reported the 1.8 A resolution structure of the regulatory domain (RD) of Physarum myosin II in which Ca2+ is bound to a canonical EF-hand that is also in a closed state. The 12th position of the EF-hand loop, which normally provides a bidentate ligand for Ca2+ in the open state, is too far in the structure to participate in coordination of the ion. The structure includes a second Ca2+ that only mediates crystal contacts. To reveal the mechanism behind the regulatory effect of Ca2+, we compared conformational flexibilities of the liganded and unliganded RD. Our working hypothesis, i.e. the modulatory effect of Ca2+ on conformational flexibility of RD, is in line with the observed suppression of hydrogen-deuterium exchange rate in the Ca2+-bound form, as well as with results of molecular dynamics calculations. Based on this evidence, we concluded that Ca2+-induced change in structural dynamics of RD is a major factor in Ca2+-mediated regulation of Physarum myosin II activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号